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Abstract

We present the *X -calculus, a linear model of computation, which has a direct Curry-Howard
correspondence with classical logic. The logical setting is classical sequent calculus. *X introduces
terms for explicit erasure and duplication, which correspond to weakening and contraction on the
logical side. Furthermore, it is a calculus of explicit substitutions. Non-confluence and interface
preservation are also some of the features. Since λ-calculus is easily represented, the untyped
language is Turing-complete.

1. Introduction

The fundamental connection between logic and computation is known as the Curry-Howard
correspondence. Originally it was used to refer to the connection between simply typed λ-
calculus and intuitionistic logic. Later it became the ”Curry-Howard paradigm”, which means that
this pattern of thinking was successfully applied to relate other calculi with their corresponding
logics. Basically, it relates logical concepts term/reduction/type with computational concepts
proof/normalization/proposition.

The first step in applying this paradigm to classical logic was done by T. Griffin [Gri90]. He noted
the connection of classical logic with functional programming languages with control operators, which
initiated the lively research in this area. After studying the computational content of classical natural
deduction, for example the λµ-calculus of M. Parigot [Par92], people started considering classical
sequent calculus, which exhibits various symmetries. There are several calculi that are based on
sequent calculus formalism, for example one of the first was λ̄µµ̃-calculus of P. L. Curien and H.
Herbelin [CH00].

On the other side, although placed in the area of classical logic, our work has been strongly
influenced by results in the field of intuitionistic logic and λ-calculus, namely by the results presented
in [KL06] of D. Kesner and S. Lengrand. They designed the λlxr-calculus which is an extension of λx

([BR95]) with explicit operators for erasure and duplication.

X -calculus before *X -calculus The calculus we are presenting in this paper has its predecessor, it
is the X -calculus of S. van Bakel, P. Lescanne and S. Lengrand [vBLL05]. The origin of the language
X lies in the notations for the sequent calculus (variant G3 of [Kle52]) as presented first by C. Urban
[UB99, Urb00] and later studied in relation with λ̄µµ̃-calculus by S. Lengrand [Len03] via the calculus
there called λε. Another paper [LZ06] presents *X from the point of view of diagrams, whereas
this paper insists mostly on the term-calculus and its connection with sequent calculus. Moreover it
compares *X with X .
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*X -calculus The *X -calculus can be seen as an extension of X -calculus. It has four extra sintactic
elements, two for erasers and two for duplicators. Its logical setting is the formulation of classical
sequent system known as G2 [Kle52]. It is a variant of Gentzen’s LK [Gen35] where structural rules
are explicitly given, contexts are lists of formulas and inference rules are given in the context-splitting
style. Thus as the reader may assume, the new syntactic elements - eraser and duplicator, have an
intuitive and direct logical interpretation as weakening and contraction. We also introduce the notion
of linearity in *X .

Substitution Our calculus is basically a calculus of explicit substitutions. A lot of research has
been done on explicit substitutions, mostly in the context of λ-calculi, for example [ACCL91, Les94,
BR95]. The main idea was to design calculi where the substitution will have a syntactic representation,
unlike in λ-calculus where it is a meta-operation.

The main difference regarding explicit substitution, when we speak in the context of *X and
classical logic, lies in the fact that here it can be applied to both sides, left or right. In λx we know
that, once it is created, explicit substitution 〈x = Q〉 can be distributed only to the left-hand side

(λx.P )Q B−→ P 〈x = Q〉

whilst in *X it is not apriori decided which term will became substitution, the one on the left, or the
one on the right. This has a simple syntactic representation

Pα̂ † x̂Q

left−
activationactivation

right−

Pα̂ † x̂Q P α̂ † x̂Q

where in one case Q plays the role of explicit substitution (more precisely: [α̂ † x̂Q]) and in the other
case it is P (or more precisely: [Pα̂ † x̂]).

Duplication and Erasure The existence of an explicit term for duplication enables us to define
a reduction engine which does not duplicate a term when there is no need. For comparison, in
X -calculus we always duplicate a term. This is due to the fact that the duplicator is hidden, which
means that we do not know if it is really there. Since we do not want to miss any, we always have to
assume it implicitly exists.

Similarly, the existence of a term called eraser, allows us to perform the cancellation i.e. erasing
when there is no need to propagate the term further. In X -calculus, terms that were supposed to be
canceled, were propagated until they reach the level of ground terms (where the propagation must
end) and only then would they get canceled.

Structure of the Paper The rest of the paper is organized as follows: in section 2 we present
the calculus itself, with the notion of linearity; section 3 defines a typing system revealing the
correspondence with sequential classical logic; section 4 describes a relation between X -calculus and
*X ; section 5 presents the encoding of λ-calculus and finally section 6 is a conclusion with future
work.

2. The Calculus

In this section we give the syntax of untyped *X -calculus as well as the set of reduction rules.
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2.1. The Syntax

Terms are built from names. This concept differs essentially from one applied in λ-calculus, where the
notion of a variable is essential. The difference lies in the fact that a variable can be substituted by an
arbitrary term, while a name can be only renamed (substituted by another name). In our calculus the
renaming is explicit, which means that it is expressed within the language itself. The reader will notice
the presence of hats on some names. This notation has been borrowed from Principia Mathematica
[WR25] and is used to denote the binding of a name.

An interesting feature of *X is that the same construction, e.g., an exporter, an importer, a cut and
a duplicator, binds two names. A duplicator binds either two in-names or two out-names, whereas the
other operators bind an in-name and an out-name. Moreover the names that are bound can belong to
the same term, or to two different terms. For example, importer and cut, which are dyadic operations,
bind an out-name in a term on the left and an in-name in a term on the right.

Definition 1 (*X -terms) The terms of the *X -calculus are given by the syntax represented by
Figure 1, where x, y... range over the infinite set of in-names and α, β... over the infinite set
of out-names.

P,Q ::= 〈x.α〉 capsule

| x̂ P β̂ . α exporter
| P α̂ [x] ŷ Q importer
| Pα̂ † x̂Q cut
| x� P left-eraser
| P � α right-eraser

| z<
bxby〈P ] left-duplicator

| [P 〉bαbβ >γ right-duplicator

Figure 1: The Syntax

The Components of the Syntax
CAPSULE : 〈x.α〉 It is the basic element for constructing terms, i.e. a ground term, as it can not

be decomposed. It has one in-name x and one out-name α.
EXPORTER : (ŷ P β̂ . α) It is a term which binds two names, an in-name y and an out-name β of

the subterm P . Together they represent a functionality which is made available on the new output α.
IMPORTER : (P β̂ [x] ŷ Q) It consists of two subterms P and Q and it binds an out-name β of

the first term, namely P , and an in-name x of the second, namely Q. These two names are meant
to be connected to each other. Since their type can be different, a “mediation” is necessary. This is
made through an in-name y of functional type. Eventually an importer is aimed to interact with an
exporter. Thus, an importer is the counterpart of an exporter. The reduction rule that describes the
interaction between an exporter and an importer is in fact the basic computational step in *X -calculus.

CUT : (Pα̂ † x̂Q) It represents a direct connection between the two subterms P and Q. Cut
connects α in P with x in Q. Actually, the terminology “cut” looks odd for a “connection” (the
terminology comes from the proof theory). Here, “cut” † denotes something that links, or attempts
to connect, but never something that separates or cuts. We could say, it ’cuts’ through the structure
of a term in order to ’link’ two names (i.e., two terms over those two names).
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ERASERS (Left and Right) : x � P and P � α The first one explicitly adds the in-name (which,
in the linear case, does not occur in P ) to be free in the expression x� P . Similarly P � α adds the
free out-name to a term P . These operators corresponds to the inference rules called left and right
weakening in the sequent calculus.

DUPLICATORS (Left and Right) : x<
cx1cx2
〈P ] and [P 〉cα1cα2

>α As we will deal only with linear terms,
these operators are a way to simulate multiple occurrences of names in a term. More precisely
x<

cx1cx2
〈P ] allows x to pretend it would occur twice in P , but the linearity of P is preserved. Actually

x is duplicated into x1 and x2.

Free Names The set of free names, i.e. free in-names and free out-names is defined by Figure 2.
We write fn to denote the set of names and fin and fon to denote the sets of in-names and out-names,
respectively. Thus we have fn(P ) = fin(P ) ∪ fon(P ). A name which is not free is called a bound
name.

S fin(S) fon(S)

〈x.α〉 x α

x̂ P β̂ . α fin(P )\{x} (fon(P )\{β}) ∪ {α}
P α̂ [x] ŷ Q fin(P ) ∪ (fin(Q)\{y}) ∪ {x} (fon(P )\{α}) ∪ fon(Q)

Pα̂ † x̂Q fin(P ) ∪ (fin(Q)\{x}) (fon(P )\{α}) ∪ fon(Q)

x� P fin(P ) ∪ {x} fon(P )

P � α fin(P ) fon(P ) ∪ {α}

x<
cx1cx2
〈P ] (fin(P )\{x1, x2}) ∪ {x} fon(P )

[P 〉cα1cα2
>α fin(P ) (fon(P )\{α1, α2}) ∪ {α}

Figure 2: Free Names

We are assuming that the terms are equal up to the α-conversion, which means up to the renaming
of bound in-names or out-names.

We adopt a convention known as Barendregt’s convention on variables, which states that free and
bound names are always considered to be distinct. In *X -calculus it will be a convention on names: “A
name is never both, free and bound, in a term”.

If we wish to think of sets fn(P ), fin(P ) and fon(P ) as lists, we will use the notation Φn(P ) (or
simply Φ), Φin(P ) and Φon(P ), respectively. The simpler way would be to write ΦP

n , ΦP
in and ΦP

on.
If we wish to exclude the name, say out-name z, from the list, we write ΦP

on\z

Indexing In what follows, free names will be renamed by indexing. Let i be an index (a natural),
P a term and Φ a set of free names occurring in P . Then ind(P,Φ, i) means for example: a name
x belonging to Φ is replaced in P by xi and a name α belonging to Φ is replaced in P by αi. To
avoid losing linearity, we assume that we start with non-indexed names. The way we use it, indexing
preserves linearity.

When Φin is a list of in-names, we write Φin,i for the same list of names indexed by i and similarly
with Φon for out-names.

Linearity A term is linear if it satisfies the following:

• Every name has at most one free occurrence and
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• Every binder does bind an occurrence of a name (does bind something)

In our calculus we consider only linear terms. Although the syntax in general produces non-linear
terms, it appears that they have a linear representation. Take for example the term 〈x.α〉 � α, which
is not linear since the out-name α has two free occurrences. It can be represented in *X by the term
[〈x.α1〉 � α2〉ca1ca2

>a. The other cause of non-linearity is when we have a binder which binds no name,
for example in a term x̂ 〈x.α〉 β̂ . γ. The problematic binder is β̂, and this is solved by using *X -term
x̂ (〈x.α〉 � β) β̂ . γ. According to this, what enables us to stay linear is the presence of terms for
weakening and contraction.

For the formal definition of linear terms, see Figure 3.

〈x.α〉 linear

P linear , x ∈ fin(P), β ∈ fon(P), α /∈ fon(P)

x̂ P β̂ . α linear

P,Q linear , α ∈ fon(P), x ∈ fin(Q), y /∈ fin(P ,Q), fn(P) ∩ fn(Q) = ∅

P α̂ [y] x̂ Q linear

P,Q linear , α ∈ fon(P), x ∈ fin(Q), fn(P) ∩ fn(Q) = ∅

Pα̂ † x̂Q linear

P linear , x /∈ fin(P)

x� P linear

P linear , α /∈ fon(P)

P � α linear

P linear , x , y ∈ fin(P), z /∈ fin(P)

z<
bxby〈P ] linear

P linear , α, β ∈ fon(P), γ /∈ fon(P)

[P 〉bαbβ >γ linear

Figure 3: Linear Terms

2.2. Reduction Rules

In this section we define the reduction relation ∗X−−→. As for the cut-elimination, this system has many
rules. Therefore we found it convenient to split them into five classes, which are themselves split into
symmetrical subclasses “left” and “right”, with the exception of logical rules.

We are also assuming some simple equivalences on terms, coming from the commutativity of
weakenings, as well as from associativity and commutativity of formulas in contractions.

Reduction rules are divided into

• Activation rules (left and right)

• Propagation rules (left and right)

• Actions (left and right)

• Deactivation rules (left and right)

• Logical rules
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2.2.1. Activation Rules

Reduction rules proceed towards eliminating cuts in terms. In the process of reducing there are
situations when one has to choose the side where cuts will be propagated. This choice will be explicitly
represented by bending the cut towards either the left or the right. A bended cut is called an active
cut. The syntax will be extendend so that it can show the direction of activation.

Definition 2 (Active Cuts) The syntax is extended with the two active cuts:

P,Q ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

Remark The terms Pα̂ † x̂Q and Pα̂ † x̂Q are essentially different. Perhaps this is best illustrated
by Lafont’s example [GLT89]. Take P = M �α and Q = x�N , where M and N are arbitrary terms.
Then we have

(M � α)α̂ † x̂(x�N) → ΦN
in �M � ΦN

on

(M � α)α̂ † x̂(x�N) → ΦM
in �N � ΦM

on

On the other hand the actual activation is defined by the reduction rules. See Figure 4. In general, a
cut can be activated in both ways.

(L− activation) : Pα̂ † x̂Q → Pα̂ † x̂Q, with P 6= ŷ P ′ β̂ . α and P 6= 〈y.α〉
(R − activation) : Pα̂ † x̂Q → Pα̂ † x̂Q, with Q 6= Q′ β̂ [x] ŷ Q′′ and Q 6= 〈x.β〉

Figure 4: Activation Rules

The existence of this choice has a consequence that *X is a non-confluent calculus. But if one
is interested in the property of confluence, it is easily achievable by giving priority to either left or
right-activation (in the case when both are possible). We can denote those reduction relations as ∗Xl−−→
and ∗Xr−−→. Thus we obtain two calculi which are both confluent.

2.2.2. Propagation Rules

Propagation rules describe how cut is being propagated through the structure of terms. This is a step
by step propagation (reduction rules “describe” propagation). It is significant to note that propagation
of a cut over another inactive cut is enabled, which allows the possibility to elegantly represent β-
reduction. The rules are divided into “left” and “right” symmetric groups, see Figures 5 and 8.

Observe for example the first reduction rule (exp † − prop) from the left group; it shows how an
active cut (or if you wish, an explicit substitution [β̂ † ŷR]) enters from the left through an export,
and then stops at its immediate subterm.

2.2.3. Actions

Actions are reduction rules which specify erasure and duplication. They refer to the situation when
the cut which is being propagated meets an eraser or a duplicator. See Figures 6 and 9.

The erasure of a term is performed in such a way that no free names are lost in the computation.
They are “attached” to the remaining term.In the process of computation we also have duplication.
The duplication of terms is performed in such a way that we do not allow the same free name to occur
more times. Here we are using indexing to keep duplicated free names distinct. According to this,
actions preserve the linearity of terms. We used abbreviations to present the rules for erasure and
duplication.
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The syntax of those rules may look complicated to the reader, therefore we give a graphical
illustration (which can simultaneously be viewed as a proof-transformation). The action of duplicating
the term can be represented in the following way:

P Q Q

��

Q
P

The same stands for the action of erasing a term, it becomes more clear when shown in the illustration
below:

P

P

fn(Q)

fn(Q)

Q

2.2.4. Deactivation Rules

Once the cuts are activated they are performing various activities, they can be propagated, erased,
duplicated, but also deactivated. The important point in the reduction procedure is that they can not
be deactivated at will. It is the deactivation group of rules that specifies when a cut is deactivated.
See Figures 7 and 10. Only when a cut is in the situation that it can not be activated again, we can
apply reductions from the group of logical rules.

Notice that the interplay between the reductions specifying the activation and the ones specifying
the deactivation can not cause infinite reduction sequences of the form act, deact, act, deact ..., due
to side conditions.
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This page contains figures specifying left-directed reductions.

(exp † − prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(imp † − prop1) : (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ Q, β ∈ fon(P )

(imp † − prop2) : (P α̂ [x] ẑ Q)β̂ † ŷR → P α̂ [x] ẑ (Qβ̂ † ŷR), β ∈ fon(Q)

(cut(caps) † − prop) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR → Pα̂ † ŷR

(cut † − prop1) : (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂Q, β ∈ fon(P ), q 6= 〈x.β〉

(cut † − prop2) : (Pα̂ † x̂Q)β̂ † ŷR → Pα̂ † x̂(Qβ̂ † ŷR), β ∈ fon(Q), q 6= 〈x.β〉

(L–eras † − prop) : (x� P )β̂ † ŷR → x� (P β̂ † ŷR)

(R–eras † − prop) : (P � α)β̂ † ŷR → (P β̂ † ŷR)� α, α 6= β

(L–dupl † − prop) : (x<
cx1cx2
〈P ])β̂ † ŷR → x<

cx1cx2
〈P β̂ † ŷR]

(R–dupl † − prop) : ([P 〉cα1cα2
>α)β̂ † ŷR → [P β̂ † ŷR〉cα1cα2

>α, α 6= β

Figure 5: Left Propagation

( † erasure) : (P � β)β̂ † ŷR → Φin � P � Φon

Φin = fin(R)\{y}, Φon = fon(R)

( † duplication) : ([P 〉
cβ1cβ2

>β)β̂ † ŷR → Φin <
Φ̂in,1

Φ̂in,2
〈(P β̂1

† ŷ1R1)β̂2
† ŷ2R2〉

Φ̂on,1

Φ̂on,2
> Φon

Φin = fin(R) \ {y}, Φon = fon(R)

R1 = ind(R,Φin ∪ Φon, 1) R2 = ind(R,Φin ∪ Φon, 2)

Figure 6: Outname Actions

(cap † − deactivation) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(exp † − deactivation) : (x̂ P γ̂ . β)β̂ † ŷR → (x̂ P γ̂ . β)β̂ † ŷR

Figure 7: Left Deactivation
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This page contains figures describing right-directed reductions.

( †exp− prop) : Pα̂ † x̂(ŷ Q β̂ . γ) → ŷ (Pα̂ † x̂Q) β̂ . γ

( † imp− prop1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ R, x ∈ fin(Q)

( † imp− prop2) : Pα̂ † x̂(Q β̂ [y] ẑ R) → Q β̂ [y] ẑ (Pα̂ † x̂R), x ∈ fin(R)

( †cut(caps)− prop) : Pα̂ † x̂(〈x.β〉β̂ † ŷR) → Pα̂ † ŷR

( †cut− prop1) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷR, x ∈ fin(Q), Q 6= 〈x.β〉

( †cut− prop2) : Pα̂ † x̂(Qβ̂ † ŷR) → Qβ̂ † ŷ(Pα̂ † x̂R), x ∈ fin(R), Q 6= 〈x.β〉

( †L–eras− prop) : Pα̂ † x̂(y �Q) → y � (Pα̂ † x̂Q), x 6= y

( †R–eras− prop) : Pα̂ † x̂(Q� β) → (Pα̂ † x̂Q)� β

( †L–dupl − prop) : Pα̂ † x̂(y<
by1by2
〈Q]) → y<

by1by2
〈Pα̂ † x̂Q], x 6= y

( †R–dupl − prop) : Pα̂ † x̂([Q〉
cβ1cβ2

>β) → [Pα̂ † x̂Q〉
cβ1cβ2

>β

Figure 8: Right Propagation

( †erasure) : Pα̂ † x̂(x�Q) → Φin �Q� Φon

Φin = fin(P ), Φon = fon(P )\{α}

( †duplication) : Pα̂ † x̂(x<
cx1cx2
〈Q]) → Φin <

Φ̂in,1

Φ̂in,2
〈P2α̂2 † x̂2(P1α̂1 † x̂1Q〉

Φ̂on,1

Φ̂on,2
)> Φon

Φin = fin(P ), Φon = fon(P ) \ {α}

P1 = ind(P,Φin ∪ Φon, 1) P2 = ind(P,Φin ∪ Φon, 2)

Figure 9: Inname Actions

( †cap− deactivation) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉

( † imp− deactivation) : Pα̂ † x̂(Q β̂ [x] ŷ R) → Pα̂ † x̂(Q β̂ [x] ŷ R)

Figure 10: Right Deactivation
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2.2.5. Logical Rules

Logical rules describe the cut-elimination between two terms which both introduce names involved in
a cut, i.e. they refer to cuts which can not be activated. See Figure 11.

(cap− ren) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉

(exp− ren) : (ŷ P β̂ . α)α̂ † x̂〈x.γ〉 → ŷ P β̂ . γ

(imp− ren) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑ Q) → P β̂ [y] ẑ Q

(exp− imp) : (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP )β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)

Figure 11: Logical Rules

The first three logical rules specify the renaming. The third logical rule represents the basic
computational step. It describes the direct interaction between an exporter and an importer, which
results in inserting the subterm of an exporter between the two subterms of an importer (notice that
y, β ∈ P ).

The reduction system enjoys some nice properties, as given by the following lemma.

Lemma 1 (The basic properties of ∗X−−→)

1. The reductions preserve the set of free names: If P
∗X−−→ Q then fn(P ) = fn(Q)

(Interface preservation [Laf95]).

2. The reductions preserve linearity: If P is linear and P
∗X−−→ Q then Q is linear.

Proof. By treating each reduction rule, the proof proceeds by induction on the structure of terms.

3. Type System

In this framework, types are arrow types. Given a set T of basic types, a type is given by

A,B ::= T | A → B.

The type assignment of a term is given in the form T ··· Γ ` ∆, where Γ is a set1 of type declarations
for in-names, e.g., Γ ≡ x :A, y :B and ∆ is a set of declarations for out-names, e.g., ∆ ≡
α :A, β :A → B, γ :C. The type system for *X is given in Figure 12.

Classical Sequent Calculus If we remove the term-decoration in the type system of Figure 12,
we get the sequent system for classical logic. See Figure 13. The sequent system we consider is very
similar to Kleene’s G1 variant [Kle52].

The reader will notice that this system is an implicational fragment of classical sequent calculus
in the context-splitting style. An important point to note is the presence of explicit structural rules
(weakening and contraction).

1In fact Γ and ∆ are multisets, but since all names are distinct we can treat them as sets
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(capsule)
〈x.α〉 ··· x :A ` α :A

P ··· Γ ` α :A, ∆ Q ··· Γ′, y :B ` ∆′

(importer)
P bα [x] by Q ··· Γ, Γ′, x :A → B ` ∆, ∆′

P ··· Γ, x :A ` α :B, ∆
(exporter)bx P bα . β ··· Γ ` β :A → B, ∆

P ··· Γ ` α :A, ∆ Q : Γ′, x :A ` ∆′

(cut)
P bα † bxQ ··· Γ, Γ′ ` ∆, ∆′

P ··· Γ ` ∆
(L-eraser)

x� P ··· Γ, x :A ` ∆

P ··· Γ ` ∆
(R-eraser)

P � α ··· Γ ` α :A, ∆

P ··· Γ, x :A, y :A ` ∆
(L-duplicator)

z<
bxby〈P ] ··· Γ, z :A ` ∆

P ··· Γ ` α :A, β : A, ∆
(R-duplicator)

[P 〉bαbβ >γ ··· Γ ` γ :A, ∆

Figure 12: Type System

(axiom)
A ` A

Γ ` A, ∆ Γ′, B ` ∆′

(L→)
Γ, Γ′, A → B ` ∆, ∆′

Γ, A ` B, ∆
(R→)

Γ ` A → B, ∆

Γ ` A, ∆ Γ′, A ` ∆′

(cut)
Γ, Γ′ ` ∆, ∆′

Γ ` ∆
(L-weakening)

Γ, A ` ∆

Γ ` ∆
(R-weakening)

Γ ` A, ∆

Γ, A, A ` ∆
(L-contraction)

Γ, A ` ∆

Γ ` A, A, ∆
(R-contraction)

Γ ` A, ∆

Figure 13: Classical Sequent Calculus

• Implicational means that only arrows (or implications) occur to form types (or propositions).
• Classical means that the types (or the propositions) are those of the implicational fragment of
classical propositional logic.
• Context splitting means that in the rules with two premises, namely (L →) and (cut), contexts are
split.

If we want to see reductions of *X as proof-transformations, the subject reduction property is
essential.

Theorem 1 (Subject Reduction) If S ··· Γ ` ∆ and S
∗X−−→ S′, then S′ ··· Γ ` ∆

Proof. Due to a lack of space we will give the proof for some of the non-trivial cases of reduction rules.
First we write the typing derivations corresponding to S and after, the derivations corresponding to
S′.

• Take (ŷ P β̂ . α)α̂ † x̂〈x.γ〉 ∗X−−→ ŷ P β̂ . γ . On one hand we have
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P ··· Γ, y : A ` β : B, ∆
(→ R)by P bβ . α ··· Γ ` α : A → B, ∆

(ax)
〈x.γ〉 ··· x : A → B ` γ : A → B

(cut)

(by P bβ . α)bα † bx〈x.γ〉 ··· Γ ` γ : A → B, ∆

On the other hand,

P ··· Γ, y : A ` β : B, ∆
(→ R)by P bβ . γ ··· Γ ` γ : A → B, ∆

• Take (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) ∗X−−→ Qγ̂ † ŷ(P β̂ † ẑR), with y, β ∈ P. On one hand we
have

P ··· Γ, y : A ` β : B, ∆
(→ R)by P bβ . α ··· Γ ` α : A → B, ∆

Q ··· Γ′ ` γ : A, ∆′ R ··· Γ′′, z : B ` ∆′′

(→ L)
Q bγ [x] bz R ··· Γ′, Γ′′, x : A → B ` ∆′, ∆′′

(cut)

(by P bβ . α)bα † bx(Q bγ [x] bz R) ··· Γ, Γ′, Γ′′ ` ∆, ∆′, ∆′′

On the other hand,

Q ··· Γ′ ` γ : A, ∆′

P ··· Γ, y : A ` β : B, ∆ R ··· Γ′′, z : B ` ∆′′

(→ L)

P bβ † bzR ··· Γ, Γ′′, y : A ` ∆, ∆′′

(cut)

Qbγ † by(P bβ † bzR) ··· Γ, Γ′, Γ′′ ` ∆, ∆′, ∆′′

• Take (P � β)β̂ † ŷR
∗X−−→ ΦR

in � P � ΦR
on. On one hand we have

P ··· Γ ` ∆
(weak-R)

P � β ··· Γ ` β : B, ∆ R ··· Γ′, y : B ` ∆′

(cut)

(P � β)bβ † byR ··· Γ, Γ′ ` ∆, ∆′

On the other hand,

P ··· Γ ` ∆
(weak)

...
(weak)

ΦR
in � P � ΦR

on ··· Γ, Γ′ ` ∆, ∆′
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4. X vs *X

Perhaps the best explanation of *X -calculus is through an illustrative example. The reader will also
be given a chance to compare the same example in the framework of X -calculus. We will prove the
Peirce law, a proposition which can not be proven in intuitionistic logic.

An Example We give the proof of Peirce law ((A → B) → A) → A in our logical setting - LK
with explicit weakening and contraction. Through Curry-Howard correspondence we can witness how
the *X -term for Peirce law is being built:

(capsule)
〈x.α1〉 ··· x : A ` α1 : A

(R-eraser)
〈x.α1〉 � β ··· x : A ` α1 : A, β : B

(exporter)bx (〈x.α1〉 � β) bβ . γ ··· ` α1 : A, γ : A → B
(capsule)

〈y.α2〉 ··· y : A ` α2 : A
(importer)

(bx (〈x.α1〉 � β) bβ . γ) bγ [z] by 〈y.α2〉 ··· z : (A → B) → A ` α1 : A, α2 : A
(R-duplicator)

[(bx (〈x.α1〉 � β) bβ . γ) bγ [z] by 〈y.α2〉〉cα1cα2
>α ··· z : (A → B) → A ` α : A

(exporter)bz ([(bx (〈x.α1〉 � β) bβ . γ) bγ [z] by 〈y.α2〉〉cα1cα2
>α) bα . δ ··· ` δ : ((A → B) → A) → A

When we remove the 
term−annotation we get:

(axiom)
A ` A

(R-weakening)
A ` A, B

(→ R)
` A, A → B

(axiom)
A ` A

(→ L)
(A → B) → A ` A, A

(R-contraction)
(A → B) → A ` A

(→ R)
` ((A → B) → A) → A

In order to allow reader to compare, we give the same proof corresponding to X -calculus. See
Figure 14.

5. Encoding λ-Calculus

The calculus we presented can be used to encode various calculi. Here we give the encoding of
λ-calculus which proves that untyped *X is Turing-complete.

In order to present the encoding in a more elegant way we define the operation ◦, which adds
erasers where necessary:

x ◦, VMUα =
{

x� VMUα, x /∈ fv(M)
VMUα, x ∈ fv(M)

Notice that M is a λ-calculus term and that, in this context, x is a variable of the λ-calculus (hence
the use of fv for “free variables”). The same letters are used for both, the variables of λ-calculus and
the in-names of *X -calculus. Indeed, they correspond to each other in the sense that a free variable
in λ-calculus becomes a free in-name in *X , after the encoding.
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(capsule)

〈x.α〉 ··· x : A ` α : A, β : B
(exporter)bx 〈x.α〉 bβ . γ ··· ` α : A, γ : A → B

(capsule)
〈y.α〉 ··· y : A ` α : A

(importer)
(bx 〈x.α〉 bβ . γ) bγ [z] by 〈y.α〉 ··· z : (A → B) → A ` α : A

(exporter)bz ((bx 〈x.α〉 bβ . γ) bγ [z] by 〈y.α〉) bα . δ ··· ` δ : ((A → B) → A) → A

When we remove the 
term−annotation we get:

(axiom)
A ` A, B

(→ R)
` A, A → B

(axiom)
A ` A

(→ L)
(A → B) → A ` A

(→ R)
` ((A → B) → A) → A

Figure 14: Peirce Law in X

Definition 3 (Encoding λ-calculus) The encoding of λ-calculus terms in *X -calculus is defined as
follows:

VxUα := 〈x.α〉
Vλx.MUα := x̂ (x ◦, VMUβ) β̂ . α

VMNUα := Φin<
Φ̂in,1

Φ̂in,2
〈Mγ̂ † x̂N ],

where
Φin = fv(M) ∩ fv(N) \ {x}
M = ind(VMUγ ,Φin, 1)
N = ind(VNUβ ,Φin, 2) β̂ [x] ŷ 〈y.α〉

Lemma 2 (Faithfulness) If M β−→ N , then VMUα
∗X−−→ (fin(VMUα) \ fin(VNUα))� VNUα.

For the simple case, when fin(VMUα) \ fin(VNUα) = ∅, the property becomes VMUα
∗X−−→ VNUα.

6. Conclusion and Future Work

This work is a link in a chain of works in the field of computational representation of classical logic. The
calculus we presented has many desirable properties. The fact that *X is a linear model of computation
for classical logic, can be used to study classical computation in two (or more) dimensions, i.e. it can
lead to a design of some type of diagrammatic calculus for functional programming.
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