Apéro-réflexion

J.-F. Monin

Univ. Joseph Fourier and VERIMAG Grenoble, France

JFLA, jan. 2007

Rappels sur Coq

Coq

- logique (formules, règles d'inférence)
- calcul fonctionnel (langage applicatif)
- système de types riche

Démo en ligne

Rappels sur Coq

Coq

- logique (formules, règles d'inférence)
- calcul fonctionnel (langage applicatif)
- système de types riche

Démo en ligne

Rappels sur Coq

Coq

- logique (formules, règles d'inférence)
- calcul fonctionnel (langage applicatif)
- système de types riche

Démo en ligne

Réflexion ou internalisation

Une des idées clé introduites par Gödel (théorème d'incomplétude)

Technique de preuve à la mode en Coq

Réflexion ou internalisation

Une des idées clé introduites par Gödel (théorème d'incomplétude)

Technique de preuve à la mode en Coq

Réflexion ou internalisation

Une des idées clé introduites par Gödel (théorème d'incomplétude)

Technique de preuve à la mode en Coq

```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données
```

Inductive $code_of_a_prop$: Set:= . . . Definition φ : $code_of_a_prop o Prop$ Definition compute : $code_of_a_prop$ —

Étape 2: démontrer un théorème de correction Theorem correctness:

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Etape 3: jouer Convertir le but, appliquer le théorème, c'est fini

Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données

```
Inductive code\_of\_a\_prop: Set:= \dots
Definition \varphi : code\_of\_a\_prop 	o Prop
Definition compute : code\_of\_a\_prop 	o bool
```

Étape 2: démontrer un théorème de correction Theorem correctness:

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Etape 3: jouer Convertir le but, appliquer le théorème, c


```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données
```

Inductive $code_of_a_prop$: Set:= ...Definition $\varphi : code_of_a_prop \rightarrow Prop$ Definition $compute : code_of_a_prop \rightarrow bool$

Étape 2: démontrer un théorème de correction

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Étape 3: jouer Convertir le but, appliquer le théorème, c'est fini!

```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données
```

Inductive $code_of_a_prop$: Set:= ... Definition φ : $code_of_a_prop \rightarrow Prop$

Definition compute : code_of_a_prop → bool

Étape 2: démontrer un théorème de correction

Theorem correctness

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Étape 3: jouer

Convertir le but, appliquer le théorème, c'est fini


```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données
```

Inductive $code_of_a_prop$: Set:= ... Definition φ : $code_of_a_prop \rightarrow Prop$

Definition compute : code_of_a_prop → bool

Étape 2: démontrer un théorème de correction

Theorem correctness:

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Étape 3: jouer

Convertir le but, appliquer le théorème, c'est fini


```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données
```

```
Inductive code\_of\_a\_prop: Set:= ...
Definition \varphi : code\_of\_a\_prop \rightarrow Prop
```

Definition compute : code_of_a_prop → bool

Étape 2: démontrer un théorème de correction

Theorem correctness:

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

Étape 3: jouer

Convertir le but, appliquer le théorème, c'est fini

Theorem correctness:

```
Étape 1: internaliser representer des objets du niveau logique (propositions, preuves) par des données \begin{array}{l} \text{Inductive } code\_of\_a\_prop \colon Set := \dots \\ \text{Definition } \varphi : code\_of\_a\_prop \to Prop \\ \text{Definition } compute : code\_of\_a\_prop \to bool \\ \\ \text{Étape 2: démontrer un théorème de correction} \end{array}
```

Étape 3: jouer Convertir le but, appliquer le théorème, c'est fini

 $\forall x : code_of_a_prop, compute x = true \rightarrow \varphi x$

```
Étape 1: internaliser
representer des objets du niveau logique (propositions, preuves)
par des données
Inductive code_of_a_prop: Set:= ...
Definition \varphi: code_of_a_prop \rightarrow Prop
Definition compute : code\_of\_a\_prop \rightarrow bool
Etape 2: démontrer un théorème de correction
Theorem correctness:
     \forall x : code\_of\_a\_prop, compute x = true \rightarrow \varphi x
Étape 3: jouer
Convertir le but, appliquer le théorème, c'est fini!
```


Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3). apply correctness_nat. Qed.

Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3). apply correctness_nat. Qed

Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3).

apply correctness_nat. Qed.

Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3). apply correctness_nat. Qed.

Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3). apply correctness_nat. Qed.

Theorem correctness_nat: $\forall n$, fleches(S n) Par induction sur n.

But: $A \rightarrow A \rightarrow A \rightarrow A$ change (fleches 3). apply correctness_nat. Qed.

Similaire, en remplaçant n nat par un couple (I, y)

```
Inductive ab: Set := a : ab \mid b : ab.
```

On définit
$$\varphi_{ab}$$
 par φ_{ab} a = A et φ_{ab} b = B , et φ tel que $\varphi([x_1; \dots x_n], y) = \varphi_{ab} x_1 \to \dots \varphi_{ab} x_n \to \varphi_{ab} y_n$

Definition compute (I, y) := member y I

Theorem correctness_list:

$$\forall I, y, compute (I, y) = true \rightarrow \varphi(I, y)$$
 (par induction sur I)

Goal:
$$A \to B \to A \to A \to B \to A \to B$$

change $(\varphi_{ab}$ ([a; b; a; a; b; a], b)). apply correctness_list.

(New goal: compute ([a; b; a; a; b; a], b) =
$$true$$
.)

Similaire, en remplaçant n nat par un couple (I, y)

Inductive ab: Set $:= a : ab \mid b : ab$.

On définit φ_{ab} par φ_{ab} a = A et φ_{ab} b = B, et φ tel que $\varphi([x_1; \dots x_n], y) = \varphi_{ab} x_1 \to \dots \varphi_{ab} x_n \to \varphi_{ab} y$.

Definition compute (I, y) := member y I

Theorem correctness_list:

$$\forall l, y, compute (l, y) = true \rightarrow \varphi(l, y)$$

par induction sur l)

Goal: $A \rightarrow B \rightarrow A \rightarrow A \rightarrow B \rightarrow A \rightarrow B$ change $(\varphi_{ab}$ ([a; b; a; a; b; a], b)). apply correctness_list

(New goal: compute ([a; b; a; a; b; a], b) = true.)

Similaire, en remplaçant n nat par un couple (I, y)

Inductive ab: Set $:= a : ab \mid b : ab$.

On définit φ_{ab} par φ_{ab} a = A et φ_{ab} b = B, et φ tel que $\varphi([x_1; \dots x_n], y) = \varphi_{ab} x_1 \to \dots \varphi_{ab} x_n \to \varphi_{ab} y$.

Definition compute (I, y) := member y I

Theorem correctness_list:

$$\forall l, y, compute (l, y) = true \rightarrow \varphi(l, y)$$
 par induction sur l)

Goal: $A \to B \to A \to A \to B \to A \to B$ change $(\varphi_{ab}$ ([a; b; a; a; b; a], b)). apply correctness_list.

(New goal: compute ([a; b; a; a; b; a], b) = true.)


```
Similaire, en remplaçant n nat par un couple (I, y)
```

```
Inductive ab: Set := a : ab \mid b : ab.
```

On définit
$$\varphi_{ab}$$
 par φ_{ab} a = A et φ_{ab} b = B , et φ tel que $\varphi([x_1; \dots x_n], y) = \varphi_{ab} x_1 \to \dots \varphi_{ab} x_n \to \varphi_{ab} y$.

Definition compute (I, y) := member y I

Theorem correctness_list:

$$\forall I, y, compute (I, y) = true \rightarrow \varphi(I, y)$$
 (par induction sur I)

Goal:
$$A \to B \to A \to A \to B \to A \to B$$

change $(\varphi_{ab}$ ([a; b; a; a; b; a], b)). apply correctness_list

(New goal: compute ([a; b; a; a; b; a], b) =
$$true$$
.)

Similaire, en remplaçant n nat par un couple (I, y)

Inductive ab: Set $:= a : ab \mid b : ab$.

On définit φ_{ab} par φ_{ab} a = A et φ_{ab} b = B, et φ tel que $\varphi([x_1; \dots x_n], y) = \varphi_{ab} x_1 \to \dots \varphi_{ab} x_n \to \varphi_{ab} y$.

Definition compute (I, y) := member y I

Theorem correctness_list:

$$\forall I, y, compute (I, y) = true \rightarrow \varphi(I, y)$$
 (par induction sur I)

Goal: $A \rightarrow B \rightarrow A \rightarrow A \rightarrow B \rightarrow A \rightarrow B$ change (φ_{ab} ([a; b; a; a; b; a], b)). apply correctness_list.

(New goal: compute ([a; b; a; a; b; a], b) = true.)

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer true = true par True (et true = false par False)

plus besoin de rewrite et autre discriminate

```
Definition compute : code\_of\_a\_prop \rightarrow Prop
Theorem correctness: \forall x : code\_of\_a\_prop, compute x \rightarrow \varphi x
```

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- Piège à éviter : résultats genre True ∧ (False ∨ True) . . .
- -- programmation par continuations

Étape suivante : supprimer False

Voir démo

Le calcul de *compute* x produit soit *True*, soit ωx (en cas d'échec).

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer true = true par True (et true = false par False)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- Calculer avec True et False au lieu de true et false
- ▶ Piège à éviter : résultats genre True ∧ (False ∨ True) . . .
- → programmation par continuations

Étape suivante : supprimer False

Voir démo

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer true = true par True (et true = false par False)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- Piège à éviter : résultats genre True ∧ (False ∨ True) . . .
- → programmation par continuations

Etape suivante : supprimer False

Voir démo

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer *true* = *true* par *True* (et *true* = *false* par *False*)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- Piège à éviter : résultats genre True ∧ (False ∨ True) . . .

→ programmation par continuations

Étape suivante : supprimer False

Voir démo

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer *true* = *true* par *True* (et *true* = *false* par *False*)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- Piège à éviter : résultats genre True ∧ (False ∨ True) . . .
- → programmation par continuations

Étape suivante : supprimer False

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens Remplacer true = true par True (et true = false par False)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- ▶ Piège à éviter : résultats genre $True \land (False \lor True) \dots$
- → programmation par continuations

Étape suivante : supprimer False

Voir démo

Tout autre domaine cible que les booléens peut convenir

On peut aussi supprimer les booléens

Remplacer true = true par True (et true = false par False)

plus besoin de rewrite et autre discriminate

Definition compute : $code_of_a_prop \rightarrow Prop$

Theorem correctness: $\forall x : code_of_a_prop, compute x \rightarrow \varphi x$

- ▶ Calculer avec *True* et *False* au lieu de *true* et *false*
- Piège à éviter : résultats genre True ∧ (False ∨ True) . . .
- → programmation par continuations

Étape suivante : supprimer False

Voir démo

