Defunctionalized Interpreters for Programming Languages

Olivier Danvy
Department of Computer Science, University of Aarhus *
danvy@brics.dk

Abstract
This document illustrates how functional implementations of formal semantics (structural operational semantics, reduction semantics, small-step and big-step abstract machines, natural semantics, and denotational semantics) can be transformed into each other. These transformations were foreshadowed by Reynolds in “Definitional Interpreters for Higher-Order Programming Languages” for functional implementations of denotational semantics, natural semantics, and big-step abstract machines using closure conversion, CPS transformation, and defunctionalization. Over the last few years, the author and his students have further observed that functional implementations of small-step and of big-step abstract machines are related using fusion by fixed-point promotion and that functional implementations of reduction semantics and of small-step abstract machines are related using refocusing and transition compression. It furthermore appears that functional implementations of structural operational semantics and of reduction semantics are related as well, also using CPS transformation and defunctionalization. This further relation provides an element of answer to Felleisen’s conjecture that any structural operational semantics can be expressed as a reduction semantics: for deterministic languages, a reduction semantics is a structural operational semantics in continuation style, where the reduction context is a defunctionalized continuation. As the defunctionalized counterpart of the continuation of a one-step reduction function, a reduction context represents the rest of the reduction, just as an evaluation context represents the rest of the evaluation since it is the defunctionalized counterpart of the continuation of an evaluation function.

Categories and Subject Descriptors D.1.1 [Software]: Programming Techniques—Applicative (Functional) Programming; D.3.1 [Programming Languages]: Formal Definitions and Theory—Semantics; F.1.1 [Theory of Computation]: Computation by Abstract Devices—Models of Computation; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Operational Semantics

General Terms relations between models

Keywords big-step abstract machines, context-sensitive reduction semantics, continuations, CPS transformation, defunctionalization, interruptions, natural semantics, reduction semantics, refocusing, small-step abstract machines, structural operational semantics

1. Introduction
Witness interpreters, compilers, and partial evaluators, and going all the way back to Alan Turing’s point of simulating a virtual machine with another one [58] as well as all the way forth to the POPLmark Challenge today [6], there is simply nothing like computation to describe computation. And indeed convenient and expressive meta-languages (e.g., the lambda-calculus and propositional logic) tend to migrate into the realm of programming languages (e.g., for functional programming and for logic programming). Consequently, formalisms used to specify the semantics of programming languages—structural operational semantics (Plotkin [52]), reduction semantics (Felleisen [29]), small-step and big-step abstract machines (Winskel [65]), natural semantics (Kahn [40]), and denotational semantics (Scott and Strachey [57])—can directly be represented as programs. It is the thesis of the author and his students [1, 8, 12, 21, 38, 44–46, 48] that functional implementations of formal semantics are inter-derivable using elementary program transformations. Diagrammatically:

- In “Definitional Interpreters for Higher-Order Programming Languages” [54], John Reynolds initiated the vertical part of this diagram, on the right, structurally relating a higher-order, compositional evaluation function characteristic of a denotational semantics, a first-order, closure-based evaluation function typical of a natural semantics, and first-order mutually recursive transition functions specific to big-step abstract machines. Mads Sig Ager, Malgorzata Biernacka, Dariusz Biernacki, Jan Midtgaard and the author have shown how this functional correspondence between evaluators and abstract machines scales for various evaluation orders and monadic effects [3–5], including, e.g., the language-security technique of properly tail-recursive stack inspection [14] as well as delimited continuations [9].
2. A structural operational semantics for arithmetic expressions with interruptions and errors

This section builds on Hutton and Wright’s recent article about the meaning of interruptions [37].

2.1 A basis for interruptions

We first abstractly specify a stream of signals that can be polled:

```haskell
signature SIGNALS = sig
  type signals
  val poll : signals -> bool * signals
end

structure Signals : SIGNALS = struct
  (* deliberately omitted *)
end

type interrupts = Signals.signals
```

Polling the stream of signals yields a boolean value and the remaining stream. The boolean value reflects whether the polled signal should be interpreted as an interruption or not.

Whether to poll for interruptions is determined by a global status value. In a blocked state, the stream of signals is not polled, whereas it is polled in an unblocked state:

```haskell
data type status = B | U
```

2.2 Abstract syntax (terms and values)

2.2.1 Terms

Following Hutton and Wright, arithmetic expressions are equipped with a sequencing operator, a catch operator to intercept interruptions, a throw operator to syntactically represent the effect of an interruption as an exception, a block (resp. unblock) operator to evaluate a term in a blocked (resp. unblocked) state, and an error operator:

```haskell
data type term = LIT of int |
  ADD of term * term |
  SEQ of term * term |
  CATCH of term * term |
  THROW |
  BLOCK of term |
  UNBLOCK of term |
  ERROR
```

2.2.2 Notion of value

A value stands for an irreducible term. Either it is an integer, as can be expected from having reduced an arithmetic expression, or it is an exception:

```haskell
data type value = EXPECT of int | EXCEPT
```

The usual embedding from value to term reads as follows:

```haskell
fun v2t (EXPECT n) = LIT n |
  v2t (EXCEPT) = THROW
```

2.3 Notion of contention

A potential redex is either an actual redex or it is stuck. Each of the operators in the syntax gives rise to a potential redex: for additions, for sequencing, for intercepting interruptions, etc.:

```haskell
data type potential_redex = PRSUM of value * value |
  PRSEQ of value * term |
  PRCATCH of value * term |
  PRBLOCK of term |
  PRUNBLOCK of term |
  PERRROR
```
fun reduce (t, s, is) (* : term * status * interrupts -> (term * status * interrupts) option *)

= let datatype intermediate_result = STUCK | VALUE of value | TERM of term * status * interrupts

 fun visit (LIT n) (* : term -> (term * status * interrupts) option *)

= VALUE (EXPECT n)

| visit (ADD (t1, t2))

= (case visit t1

 of STUCK

 => STUCK

 | VALUE v1

 => (case contract (PRSUM (v1, v2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of STUCK

 => (case visit t2

 of VALUE v2

 => (case contract (PRSUM (v1, v2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of VALUE v1

 => (case contract (PRSUM (v1, v2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of VALUE v2

 => (case contract (PRSUM (v1, v2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of TERM (t1', s', is') => TERM (ADD (t1', t2), s', is'))

| visit (SEQ (t1, t2))

= (case visit t1

 of STUCK

 => STUCK

 | VALUE v1

 => (case contract (PRSEQ (v1, t2), s, is)

 of NONE

 => STUCK

 | SOME (t1', s', is') => TERM (t1', s', is'))

 of VALUE v2

 => (case contract (PRSEQ (v1, t2), s, is)

 of NONE

 => STUCK

 | SOME (t1', s', is') => TERM (t1', s', is'))

 of TERM (t1', s', is') => TERM (SEQ (t1', t2), s', is'))

| visit (CATCH (t1, t2))

= (case visit t1

 of STUCK

 => STUCK

 | VALUE v1

 => (case contract (PRCATCH (v1, t2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of VALUE v2

 => (case contract (PRCATCH (v1, t2), s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

 of TERM (t1', s', is') => TERM (CATCH (t1', t2), s', is'))

| visit THROW

= VALUE EXCEPT

| visit (BLOCK t)

= (case contract (PRBLOCK t, s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

| visit (UNBLOCK t)

= (case contract (PRUNBLOCK t, s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

| visit ERROR

= (case contract (PRERROR, s, is)

 of NONE

 => STUCK

 | SOME (t', s', is') => TERM (t', s', is'))

in case visit t

 of STUCK

 => NONE

 | VALUE v

 => SOME (v2t v, s, is)

 | TERM (t, s', is') => SOME (t, s', is')

end

Figure 1. Functional implementation of a structural operational semantics: a one-step reduction function in direct style

The individual contractions are performed within a state, and may change the status, but not the current stream of signals:

- an addition maps two expected numbers into their sum; otherwise, either or both of the arguments are unexpected, and the result is a throw operator; the status remains the same;
- sequencing from an expected number to a term yields this term; otherwise, the first argument is unexpected and the result is a throw operator; the status remains the same;
- intercepting an expected number yields this number, whereas intercepting an exception yields the second argument of the catch operator; the status remains the same;
- the blocking (resp. unblocking) operator yields a blocked (resp. unblocked) status, irrespective of the previous status;
- the error operator is stuck and does not modify the status.

All potential redexes but the last one are thus actual redexes and yield a contractum. Performing a contraction therefore optionally maps a potential redex, a status, and a stream of signals into a term, a status, and a stream of signals:

fun perform (PRSUM (EXPECT n1, EXPECT n2), s, is)

= SOME (LIT (n1 + n2), s, is)

| perform (PRSUM (EXCEPT, t), s, is)

= SOME (THROW, s, is)

| perform (PRSEQ (EXPECT n, t), s, is)

= SOME (t, s, is)

| perform (PRSEQ (EXCEPT, t), s, is)

= SOME (THROW, s, is)

| perform (PRCATCH (EXPECT n, t), s, is)

= SOME (LIT n, s, is)

| perform (PRCATCH (EXCEPT, t), s, is)

= SOME (t, s, is)
fun reduce\,\langle\,t, s, is\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{LIT } n, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{ADD } \langle t_1, t_2 \rangle, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{CATCH } \langle t_1, t_2 \rangle, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{THROW}, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{BLOCK } t, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{UNBLOCK } t, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

fun visit \langle\,\text{ERROR}, k\rangle\,\rangle
datatype intermediate_result = VALUE of value \mid TERM of term \mid status \mid interrupts

in visit \langle\,t, fn\rangle\,\rangle

end

| perform \langle\,\text{PRBLOCK } t, s, is\rangle\,\rangle = SOME \langle t, B, is \rangle
| perform \langle\,\text{PRUNBLOCK } t, s, is\rangle\,\rangle = SOME \langle t, U, is \rangle
| perform \langle\,\text{PRERROR}, s, is\rangle\,\rangle = NONE

Overall, the following contraction function optionally maps a potential redex, the current status, and the current stream of signals to a term, a new status, and a new stream of signals, unless the potential redex is stuck. An interruption raises an exception.

fun contract \langle\,pr, B, is\rangle\,\rangle = perform \langle\,pr, B, is\rangle
| contract \langle pr, U, is \rangle\,\rangle = (case Signals.poll is \langle\,false, is'\rangle \langle\,* \leftarrow \text{no interruption}\,*\rangle
| contract \langle pr, U, is \rangle\,\rangle = (case Signals.poll is \langle\,true, is'\rangle \langle\,* \leftarrow \text{an interruption}\,*\rangle
| contract \langle pr, U, is \rangle\,\rangle = SOME \langle\,\text{THROW}, U, is'\rangle

2.4 One-step reduction

We are now in position to write a total one-step reduction function in direct style that implements a structural operational semantics, as displayed in Figure 1. Computationally, a potential redex is recursively searched depth-first and from left to right, and given a term, a status, and a stream of signals, the one-step reduction function produces the following term in the reduction sequence, if there is any, together with a new status and a new stream of signals.

3. CPS transformation

In the one-step reduction function displayed in Figure 1, let us transform visit into Continuation-Passing Style [22, 51, 56]. As such, all its intermediate results are named, their computation is sequentialized, and continuations are introduced, yielding a definition where all recursive calls are tail calls. In addition, rather than propagating the stuck intermediate result all the way through the continuation, we directly map it to the final result NONE. The resulting continuation-passing reduction function is displayed in Figure 2.
fun reduce_c2 (t, s, is) = let fun visit (LIT n, kv, kt) = kv (EXPECT n)
 (* : term * status * interrupts -> answer *)
 in visit (t,
 fn v1 => visit (t2,
 fn v2 => (case contract (PRSUM (v1, v2), s, is)
 of NONE => NONE
 | SOME (t', s', is') => kt (t', s', is')),
 fn (t2', s', is') => kt (ADD (v2t v1, t2'), s', is')))
 end
in visit (t,
 fn v => SOME (v2t v, s, is),
 fn (t, s', is') => SOME (t, s', is'))
end

Figure 3. Version of Figure 2 where the continuation is split into two

Since the CPS transformation is fully correct [51], reduce in Figure 1 and reduce_c in Figure 2 implement the same one-step reduction function.

4. Splitting the continuation into two

In Figure 2, the continuation maps an intermediate result to an answer. The intermediate result is a sum, and two radically distinct things happen to each summand: in one case, the input term continues to be traversed in search for a redex; in the other, the output term continues to be constructed. This distinctness prompts us to make use of the type isomorphism between a sum-accepting function and a pair of functions and split the continuation into two:

\[(A_1 + A_2) \rightarrow B \equiv (A_1 \rightarrow B) \times (A_2 \rightarrow B)\]

The result is displayed in Figure 3. The first continuation is used to continue the search for a redex and the second one is used to map a contractum into the next term in the reduction sequence.

Since splitting the continuation is obviously correct, reduce_c in Figure 2 and reduce_c2 in Figure 3 implement the same one-step reduction function.

5. Defunctionalization

Let us defunctionalize the continuations of Figure 3 [26, 54]. To this end, we partition their function space into a sum. This sum is indexed by each of the functional abstractions \(\text{fn} \ldots \Rightarrow \ldots\) that give rise to an inhabitant of that function space. We implement this sum in the data type \text{reduction context} in Figure 4. This data type is shared by the two continuations. It is interpreted, for the first one, by the dispatch function \(\text{apply}_k\), and for the second one, by the function \(\text{apply}_k\). Modulo renaming, each clause of these apply functions is the body of a function abstraction in Figure 3. For the rest, each function abstraction in Figure 3 is replaced by a constructor of the data type \text{reduction context}, and each application of a continuation in Figure 3 is replaced by a call to the corresponding apply function. The resulting program is first-order.

Since defunctionalization is fully correct [7, 47, 53], reduce_c2 in Figure 3 and reduce_c2d in Figure 4 implement the same one-step reduction function.
fun reduce_c2d (t, s, is) = let datatype reduction_context = C_EMPTY
| C_ADD1 of reduction_context * term
| C_ADD2 of value * reduction_context
| C_SEQ of reduction_context * term
| C_CATCH of reduction_context * term
 fun applykt (C_EMPTY, (t', s', is')) = SOME (t', s', is')
 | applykt (C_ADD1 (c, t2), (t1', s', is')) = applykt (c, (ADD (t1', t2), s', is'))
 | applykt (C_ADD2 (v1, c), (t2', s', is')) = applykt (c, (ADD (v2t v1, t2'), s', is'))
 | applykt (C_SEQ (c, t2), (t1', s', is')) = applykt (c, (SEQ (t1', t2), s', is'))
 | applykt (C_CATCH (c, t2), (t1', s', is')) = applykt (c, (CATCH (t1', t2), s', is'))
 in visit (t, C_EMPTY)
end

fun applykv (C_EMPTY, v) = SOME (v2t v, s, is)
 | applykv (C_ADD1 (c, t2), v1) = visit (t2, C_ADD2 (v1, c))
 | applykv (C_ADD2 (v1, c), v2) = (case contract (PRSUM (v1, v2), s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 | applykv (C_SEQ (c, t2), v1) = (case contract (PRSEQ (v1, t2), s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 | applykv (C_CATCH (c, t2), v1) = (case contract (PRCATCH (v1, t2), s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 and visit (LIT n, c)
 = applykv (c, EXPECT n)
 | visit (ADD (t1, t2), c) = visit (T, C_ADD1 (c, t2))
 | visit (SEQ (t1, t2), c) = visit (T, C_SEQ (c, t2))
 | visit (CATCH (t1, t2), c) = visit (T, C_CATCH (c, t2))
 | visit (THROW, c) = applykv (c, EXCEPT)
 | visit (BLOCK t, c)
 = (case contract (PRBLOCK t, s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 | visit (UNBLOCK t, c)
 = (case contract (PRUNBLOCK t, s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 | visit (ERROR, c)
 = (case contract (PRERROR, s, is)
 of NONE => NONE
 | SOME (t', s', is') => applykt (c, (t', s', is')))
 in visit (t, C_EMPTY)
end

Figure 4. Defunctionalized counterpart of Figure 3, where kv and kt share the same data type of reduction contexts.

The name reduction_context already says it: this data type is that of the reduction contexts. Also, applykt can be identified as the traditional ‘plug’ function of a reduction semantics that fills a reduction context with a contractum and yields the next term in the reduction sequence. In fact, Figure 4 displays an implementation (a big-step one, by Reynolds’s book and according to the diagram of Section 1) of a reduction semantics.

We refactor this implementation in Figure 5, renaming, e.g., applykt into plug to make that property even more manifest.
Visually, Figure 5 implements the following diagram:

- A value is mapped into itself.
- A non-value term is decomposed into a potential redex and its reduction context. If the potential redex is an actual one, it is contracted and the contractum is plugged into the reduction context, yielding the next term in the reduction sequence. Otherwise, the term is stuck and the reduction sequence stops there.
Evaluation is then traditionally defined as iterated reduction:

As point out by Nielsen and the author [27], the intermediate terms in the reduction sequence can be deforested away by refocusing from the site of a redex directly to the site of the next redex in the reduction sequence:

As generously illustrated elsewhere [10, 11, 20, 27], such a refocused evaluation function implements a small-step abstract machine. As shown by Millikin and the author [25], fusing the iteration function and the move function of this yields the functional implementation of a big-step abstract machine. In the present case, this big-step abstract machine essentially coincides with Hutton and Wright’s, and one is then back in known territory [3]: the functional implementation of the big-step abstract machine is in defunctionalized form and can thus be refunctionalized [24]; the defunctionalized version is in CPS and can thus be mapped back to direct style [18]; and the result is essentially a functional implementation of Hutton and Wright’s natural semantics. We are then in position to answer Hutton and Wright’s question about the meaning of interruptions with a variety of inter-derivable semantic artifacts (i.e., man-made-constructs).

6. A context-sensitive reduction semantics for arithmetic expressions with interruptions and errors

In the previous sections, we have derived the functional implementation of a reduction semantics out of the functional implementation of a structural operational semantics by CPS transformation and defunctionalization. Except for the usual device, in Figure 2, of not applying the current continuation when getting stuck in a contraction, we have not made much use of continuations. One could, however, and as pioneered by Felleisen in his PhD thesis [29], make the contraction function context-sensitive by passing it the current reduction context and acting on it when raising an exception, e.g., to short-cut the syntactic propagation of the exceptions (not just of the errors) towards the root of the term.

In this section, we outline such a context-sensitive reduction semantics. In doing so, we leave the range of CPS-transformed and defunctionalized structural operational semantics; and symmetrically, on the other side of refocusing and fusion by fixed-point promotion, we distance ourselves from a big-step abstract machine in defunctionalized form.

6.1 Abstract syntax (terms and values)

6.1.1 Terms

The terms are the same as in Section 2.2.1.

6.1.2 Notion of value

In contrast to Section 2.2.2, a value is simply an integer:

```literate
fun v2t n = LIT n
```

6.2 Notion of context-sensitive contraction

We now interpret the throw operator as a redex:

```literate
datatype potential_redex = PRSUM of value * value |
PRSEQ of value * term |
PRCATCH of value * term |
PRTHROW |
PRBLOCK of term |
PRUNBLOCK of term |
PRERROR
```

The simpler values of Section 6.1.2 makes for simpler individual contractions than in Section 2.3. The status may be changed, but not the current stream of signals:

- an addition maps two numbers into their sum; the status remains the same;
- sequencing from a number to a term yields this term; the status remains the same;
- a catch operator is only contracted if there has been no exception; the status remains the same;
- a throw operator unwinds the current context to emptiness or to the first catch handler:

```literate
fun unwind c_EMPTYY = NONE |
unwind (c_ADD1 (c, t2)) = unwind c |
unwind (c_ADD2 (v1, c)) = unwind c |
unwind (c_SEQ (c, t2)) = unwind c |
unwind (c_CATCH (c, t2)) = SOME (t2, c)
```

the status remains the same;

- as before, the blocking (resp. unblocking) operator yields a blocked (resp. unblocked) status, irrespective of the previous status;
- the error operator is stuck and does not modify the status.

All potential redexes but the last one are thus actual redexes and yield a contractum. Performing a contraction therefore optionally maps a potential redex, a status, a stream of signals, and a reduction context into a term, a status, a stream of signals, and a reduction context:

```literate
fun perform (PRSUM (n1, n2), s, is, c) = SOME (LIT (n1 + n2), s, is, c) |
perform (PRSEQ (n, t), s, is, c) = SOME (t, s, is, c) |
perform (PRCATCH (n, t), s, is, c) = SOME (LIT n, s, is, c) |
perform (PRTHROW, s, is, c) = (case unwind c of
  NONE => SOME (THROW, s, is, c_EMPTYY) |
  SOME (t’, c’) => SOME (t’, s, is, c’)) |
perform (PRBLOCK t, s, is, c) = SOME (t, B, is, c) |
perform (PRUNBLOCK t, s, is, c) = SOME (t, U, is, c) |
perform (PRERROR, s, is, c) = NONE
```
Overall, the following context-sensitive contraction function\(^1\) optionally maps a potential redex, the current status, the current stream of signals, and the current reduction context to a term, a new status, a new stream of signals, and a new reduction context, unless the potential redex is stuck:

```haskell
fun contract (pr, B, is, c) = perform (pr, B, is, c)
| contract (pr, U, is, c) = (case Signals.poll is (* <- polling *)
  of (false, is') (* <- no interruption *)
    => perform (pr, U, is', c)
  | (true, is') (* <- an interruption *)
    => (case unwind c
        of NONE
          => SOME {THROW, U, is', C_EMPTY}
          | SOME (t', c')
            => SOME (t', U, is', c')))
```

The key new point is that if an interruption is detected, it is still treated by raising an exception but this treatment is carried out on the spot by unwinding the context in search of a catch handler or until the context is exhausted.

In fine, given the corresponding decomposition and plugging functions, we can implement the one-step reduction function as follows:

```haskell
fun reduce (t, s, is) = (case decompose t
  of VAL v
    => SOME (v2t v, s, is)
  | DEC (pr, c)
    => (case contract (pr, s, is, c)
        of NONE
          => NONE
        | SOME (t', s', is', c')
          => SOME (plug (c', t'), s', is')))
```

Proving the equivalence of this context-sensitive reduction semantics and of the previous context-insensitive one takes a degree of going. Specifically, one needs to relate the propagation of exceptions in the two semantics.

7. From reduction semantics to abstract machine

Based on the context-sensitive reduction semantics of Section 6, we define evaluation as iterated reduction (Section 7.1). To exemplify that this evaluation function always composes the decomposition function and the plug function, we replace this composition by a call to a dedicated ‘refocus’ function (Section 7.2). We then define a more efficient version of the refocus function (Section 7.3).

7.1 Reduction-based evaluation

Evaluation can yield an integer, as expected from an arithmetic expression, or an uncaught exception:

```haskell
datatype result = EXPECT of int | EXCEPTION
```

It can also become stuck.

We define evaluation by iterating over the result of decomposition. The following function optionally maps a value or a decomposition, a status, and a stream of signals to a result, a status, and a stream of signals:

```haskell
fun iterate (VAL n, s, is) = SOME (EXPECT n, s, is)
```

\(^1\) Reminder: This contraction function is context-sensitive because it is passed the reduction context and acts on it.

```haskell
| iterate (DEC (pr, c), s, is)
  = (case contract (pr, s, is, c)
      of NONE
        => NONE
      | SOME (THROW, s', is', C_EMPTY)
        => SOME (EXCEPT, s', is')
      | SOME (t', s', is', c')
        => iterate (decompose (plug (c', t')), s', is'))
```

```haskell
fun evaluate (t, s, is) = iterate (decompose t, s, is)
```

7.2 Towards refocusing

We exemplify that the evaluation function of Section 7.1 always composes `decompose` and `plug` by defining a dedicated function implementing this composition:

```haskell
fun refocus (t, c) = decompose (plug (c, t))
```

We then adjust the evaluation function to use `refocus`:

```haskell
fun iterate (VAL n, s, is) = SOME (EXPECT n, s, is)
| iterate (DEC (pr, c), s, is) = (case contract (pr, s, is, c)
  of NONE
    => NONE
  | SOME (THROW, s', is', C_EMPTY)
    => SOME (EXCEPT, s', is')
  | SOME (t', s', is', c')
    => iterate (refocus (t', c'), s', is'))
```

```haskell
fun evaluate (t, s, is) = iterate (refocus (t, C_EMPTY), s, is)
```

Morally, the initial call to `iterate`, in Section 7.1 did compose `decompose` and `plug` since plugging a term in an empty context yields this term.

7.3 Reduction-free evaluation

With the purpose of refocusing, the decomposition function is most conveniently defined as in Figure 5, i.e., as a pair of functions `decompose` that iteratively decomposes a term and accumulates a context until it reaches a value, and `decompose`\(_\text{aux}\) that dispatches on the context. Indeed, optimal refocusing consists in continuing the decomposition in the current context [27], and therefore `refocus` can be defined as `decompose`:\[27\]

```haskell
fun refocus (t, c) = decompose' (t, c)
```

The result is a small-step abstract machine that alternatively refocuses and contracts. This abstract machine is reduction free because it does not construct the intermediate terms in the reduction sequence. It also naturally embodies the optimization enabled by context sensitivity and described in Section 6.2.

8. Conclusion and perspectives

Over the last years, we have observed the following facts and drawn the following lessons:

Abstract machines: Abstract machines form a natural meeting ground between theoretically minded and practically motivated language designers and developers. They are both ‘practical enough’ to make theoretical results flow into practice and ‘theoretical enough’ to direct that flow.
Abstract vs. virtual machines: Earlier on [2], we candidly pointed at the difference between abstract machines, that directly operate on terms (e.g., the CEK machine), and virtual machines, that operate on byte code resulting from compiling a term (e.g., the JVM):

![Diagram of source term, compile, byte code, interpret, run, result]

We furthermore observed that in several cases (e.g., William Burge and Peter Henderson’s compiler for the SECD machine and Xavier Leroy’s compiler for the Krivine machine), the byte code could be deforested and the original abstract machine could be recovered. We applied this deforestation idea to Guy Cousineau, Pierre-Louis Curien, and Michel Mauny’s Categorical Abstract Machine as well as to David Schmidt’s compiler for the VEC machine. In both cases, we obtained an abstract machine that, on one hand, was in the range of defunctionalization, and on the other hand, was in the range of functionalization.

In our experience, designing the instruction set of a virtual machine is powerfully helped by (1) identifying common sequences of contractions in reduction semantics and of transitions in abstract machines, and (2) factoring combinators out of compositional evaluation functions, following Mitchell Wand’s path-breaking work on combinator-based compilers in the early 1980’s [61–64].

From big-step semantics to abstract machine: a functional correspondence. As initiated by Reynolds, closure conversion, CPS transformation, and defunctionalization make it possible to map a recursive program into the functional implementation of an abstract machine. (If the initial program is block-structured, just lambda-lift it [39].) This combination of transformations can also be used for deriving or relating programs [24,26,60] and is used today, e.g., for web programming [32] and for type inference [43].

From small-step semantics to abstract machine: a syntactic correspondence. Refocusing a reduction semantics and compressing transitions mechanically yield practical abstract machines [20].

Explicit substitutions: For weak-head normalization, Curien’s original calculus of closures [17] gives rise to a variety of practical abstract machines with environments [10].

Computational effects: On one hand, parameterizing evaluation functions with monads, and on the other hand, making contraction functions context sensitive, and using the two correspondence mentioned just above yield the same abstract machines. This coincidence scales to classical effects [5,9,46] as well as to unusual ones, such as delimited continuations, properly tail-recursive stack inspection, compound monadic effects, and call by need [4,5,9,11].

Applicability: Both the functional correspondence and the syntactic correspondence apply to a host of known machines: SECD, CEK, KAM, CLS, CAM, ZINC, etc. as well as to new machines. It also scales to full normalization (as in ‘normalization by evaluation’), objects [23,38], and the stochastic \(\pi \)-calculus.

In general, the two correspondences provide guidelines in the jungle of semantic artifacts. As Biernacka and the author facetiously put it [11]:

Call/cc was introduced in Scheme [15] as a Church encoding of Reynolds’s escape operator [54]. A typed version of it is available in Standard ML of New Jersey [34] and Griffin has identified its logical content [33]. It is endowed with a variety of specifications: a CPS transformation [22], a CPS interpreter [35,54], a denotational semantics [41], a computational monad [59], a big-step operational semantics [34], the CEK machine [31], calculi in the form of reduction semantics [30], and a number of implementation techniques [16,19,36]—not to mention its call-by-name variant in the archival version of Krivine’s machine [42].

Question: How do we know that all the artifacts in this semantic jungle define the same call/cc?

Our answer here: We know for sure when the representation of these semantic artifacts are inter-derivable.

Contexts: Contexts, like zipper data structures, are defunctionalized continuations: of an evaluation function for evaluation contexts, and of a one-step reduction function for reduction contexts. They are also in 1-to-1 correspondence with the compatibility rules in a calculus. In fact, the coincidence between the data types of reduction contexts and of evaluation contexts is pivotal in the correspondence between reduction orders (e.g., normal order, applicative order) and evaluation orders (e.g., call by name, call by value) that Gordon Plotkin discovered in “Call-by-name, call-by-value, and the \(\lambda \)-calculus” [51] and that the author and his students have materialized with the inter-derivations illustrated here.

Defining contexts and proving unique decomposition: As defunctionalized continuations, contexts can be mechanically defined out of a compositional function (e.g., one that searches for the first potential redex in a term, or an ordinary evaluation function). The unique decomposition property then holds as a corollary.

Open problem: We observe that (1) abstract machines can be obtained by CPS-transforming and defunctionalizing a compositional evaluation function, (2) reasoning about compositional evaluation functions is usually done by structural induction, possibly with an additional relation, and (3) reasoning about abstract machines is usually done using a well-founded order. Since finding such a well-founded order requires ingenuity, to which extent could one be induced by defunctionalizing a compositional evaluation function?

Parting thought: To close, we would like to underline the remarkable effectiveness of explicit substitutions (Curien, Lévy, Hardin, Abadi, Cardelli, etc.), refocusing, CPS (Strachey, Wadsworth, Reynolds, Plotkin, Steele, Friedman, Wand, Shivers, etc.), and defunctionalization (Landin, Reynolds) when considering programs as data objects.

Acknowledgments
The author is grateful to the members and chair of the ICFP’08 program committee for their invitation to present the present material. Thanks are also due to Mads Sig Ager, Malgorzata Biernacka, Dariusz Biernacki, Jan Midtgaard, Kevin Millikin, and Lasse Nielsen for the joint ride, and to Kenichi Asai, Jacob Johannsen, Johan Munk, and Ian Zerny for precious and timely comments. The running example of arithmetic expressions with interrupts and errors was developed after hours while attending AFP 2008. This work is partly supported by the Danish Natural Science Research Council, Grant no. 21-03-0545.

References

