
Defunctionalized Interpreters for Programming Languages

Olivier Danvy
Department of Computer Science, University of Aarhus ∗

danvy@brics.dk

Abstract
This document illustrates how functional implementations of for-
mal semantics (structural operational semantics, reduction seman-
tics, small-step and big-step abstract machines, natural semantics,
and denotational semantics) can be transformed into each other.
These transformations were foreshadowed by Reynolds in “Def-
initional Interpreters for Higher-Order Programming Languages”
for functional implementations of denotational semantics, natural
semantics, and big-step abstract machines using closure conver-
sion, CPS transformation, and defunctionalization. Over the last
few years, the author and his students have further observed that
functional implementations of small-step and of big-step abstract
machines are related using fusion by fixed-point promotion and that
functional implementations of reduction semantics and of small-
step abstract machines are related using refocusing and transition
compression. It furthermore appears that functional implementa-
tions of structural operational semantics and of reduction semantics
are related as well, also using CPS transformation and defunction-
alization. This further relation provides an element of answer to
Felleisen’s conjecture that any structural operational semantics can
be expressed as a reduction semantics: for deterministic languages,
a reduction semantics is a structural operational semantics in con-
tinuation style, where the reduction context is a defunctionalized
continuation. As the defunctionalized counterpart of the continua-
tion of a one-step reduction function, a reduction context represents
the rest of the reduction, just as an evaluation context represents the
rest of the evaluation since it is the defunctionalized counterpart of
the continuation of an evaluation function.

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques—Applicative (Functional) Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory—
Semantics; F.1.1 [Theory of Computation]: Computation by Ab-
stract Devices—Models of Computation; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Opera-
tional Semantics

General Terms relations between models

Keywords big-step abstract machines, context-sensitive reduction
semantics, continuations, CPS transformation, defunctionalization,

∗ IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
http://www.brics.dk/∼danvy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

interruptions, natural semantics, reduction semantics, refocusing,
small-step abstract machines, structural operational semantics

1. Introduction
Witness interpreters, compilers, and partial evaluators, and go-
ing all the way back to Alan Turing’s point of simulating a vir-
tual machine with another one [58] as well as all the way forth
to the POPLmark Challenge today [6], there is simply nothing
like computation to describe computation. And indeed conve-
nient and expressive meta-languages (e.g., the lambda-calculus
and propositional logic) tend to migrate into the realm of pro-
gramming languages (e.g., for functional programming and for
logic programming). Consequently, formalisms used to specify the
semantics of programming languages—structural operational se-
mantics (Plotkin [52]), reduction semantics (Felleisen [29]), small-
step and big-step abstract machines (Winskel [65]), natural se-
mantics (Kahn [40]), and denotational semantics (Scott and Stra-
chey [57])—can directly be represented as programs. It is the the-
sis of the author and his students [1, 8, 12, 21, 38, 44–46, 48] that
functional implementations of formal semantics are inter-derivable
using elementary program transformations. Diagrammatically:

denotational
semantics

closure conversion

��
structural
operational
semantics

CPS transformation
+

defunctionalization
��

natural
semantics

CPS transformation
+

defunctionalization ��

reduction
semantics refocusing

+
transition compression

//
small-step
abstract
machine fusion

//
big-step
abstract
machine

• In “Definitional Interpreters for Higher-Order Programming
Languages” [54], John Reynolds initiated the vertical part of
this diagram, on the right, structurally relating a higher-order,
compositional evaluation function characteristic of a denota-
tional semantics, a first-order, closure-based evaluation function
typical of a natural semantics, and first-order mutually recur-
sive transition functions specific to big-step abstract machines.
Mads Sig Ager, Małgorzata Biernacka, Dariusz Biernacki, Jan
Midtgaard and the author have shown how this functional corre-
spondence between evaluators and abstract machines scales for
various evaluation orders and monadic effects [3–5], including,
e.g., the language-security technique of properly tail-recursive
stack inspection [14] as well as delimited continuations [9].

• In “Refocusing in Reduction Semantics” [27], Lasse Nielsen
and the author initiated the horizontal part of the diagram,
structurally relating functional representations of reduction se-
mantics and abstract machines. Biernacka and the author have
shown how this syntactic correspondence between reduction se-
mantics and abstract machines scales to calculi with explicit
substitutions [10]. For example, context-sensitive reduction se-
mantics for Curien’s original calculus of closures [17] give rise
to a variety of known and new abstract machines with environ-
ments and effects [11]. Recently [25], Kevin Millikin and the
author have characterized the structural relation between small-
step abstract machines and big-step abstract machines using At-
sushi Ohori and Isao Sasano’s lightweight fusion by fixed-point
promotion [50].

• In this document, we initiate the vertical left part of the diagram,
structurally relating functional representations of structural op-
erational semantics and of reduction semantics. We characterize
a reduction semantics as the continuation-semantics analogue
of a structural operational semantics. For brevity, we stay away
from lambda-languages and binding issues, that with few ex-
ceptions [13,23,24] have been our favorite domain of discourse
so far. Instead, we consider arithmetic expressions with effects
(namely interruptions) and stuck terms (namely errors), as in
Graham Hutton and Joel Wright’s recent work [37]. In doing
so, we aim at the same sort of telling, minimalistic elegance as
can be found in Hutton’s publications.

The title “Defunctionalized Interpreters for Programming Lan-
guages” is meant as an homage to John Reynolds for his prescient
article “Definitional Interpreters for Higher-Order Programming
Languages” [54] as well as an appreciative emphasis on the defunc-
tionalization technique he introduced there. (The words ‘higher-
order’ did not make it in our title because, even with interruptions
and errors, arithmetic expressions are first-order entities.)

Prerequisites: We expect a minimal familiarity with Standard
ML, which we use as a pure meta-language, and with the format
of formal semantics as can be gathered in an undergraduate text-
book [49]. We also gamble on the reader’s patience and good will
to see small-step semantics spelled out in complete detail.

Overview: Section 2 is dedicated to arithmetic expressions with
interruptions and errors. We successively present a computational
basis for interruptions (Section 2.1), the abstract syntax of the arith-
metic expressions and its associated syntactic values (Section 2.2),
a notion of contraction (Section 2.3), and finally the functional im-
plementation of a structural operational semantics (Figure 1). We
then transform this functional implementation into continuation-
passing style (Section 3 and Figure 2), and split its sum-accepting
continuation into a pair of continuations (Section 4 and Figure 3),
where we identify the second continuation as the usual plug func-
tion that maps a context and a contractum into a term in a reduction
semantics. We then defunctionalize this pair of continuations (Fig-
ure 4) and refactor the resulting artifact into the functional imple-
mentation of a traditional reduction semantics (Figure 5) where the
reduction contexts are the data type of the defunctionalized contin-
uations. This functional implementation of a reduction semantics
can be refocused into the functional implementation of a small-
step abstract machine that in turn can be fused into essentially the
functional implementation of the same big-step abstract machine
as in Hutton and Wright’s work [37]. Alternatively (Section 6), one
can make the contraction function context-sensitive in the func-
tional implementation of the reduction semantics, which dramat-
ically simplifies the corresponding abstract machine (Section 7).
We then present some perspectives (Section 8).

2. A structural operational semantics for
arithmetic expressions with interruptions and
errors

This section builds on Hutton and Wright’s recent article about the
meaning of interruptions [37].

2.1 A basis for interruptions
We first abstractly specify a stream of signals that can be polled:
signature SIGNALS = sig

type signals
val poll : signals −> bool ∗ signals

end

structure Signals : SIGNALS = struct
(∗ deliberately omitted ∗)

end

type interrupts = Signals.signals

Polling the stream of signals yields a boolean value and the remain-
ing stream. The boolean value reflects whether the polled signal
should be interpreted as an interruption or not.

Whether to poll for interruptions is determined by a global
status value. In a blocked state, the stream of signals is not polled,
whereas it is polled in an unblocked state:
datatype status = B | U

2.2 Abstract syntax (terms and values)
2.2.1 Terms
Following Hutton and Wright, arithmetic expressions are equipped
with a sequencing operator, a catch operator to intercept interrup-
tions, a throw operator to syntactically represent the effect of an
interruption as an exception, a block (resp. unblock) operator to
evaluate a term in a blocked (resp. unblocked) state, and an error
operator:
datatype term = LIT of int

| ADD of term ∗ term
| SEQ of term ∗ term
| CATCH of term ∗ term
| THROW
| BLOCK of term
| UNBLOCK of term
| ERROR

2.2.2 Notion of value
A value stands for an irreducible term. Either it is an integer, as can
be expected from having reduced an arithmetic expression, or it is
an exception:
datatype value = EXPECT of int | EXCEPT

The usual embedding from value to term reads as follows:
fun v2t (EXPECT n) = LIT n

| v2t (EXCEPT) = THROW

2.3 Notion of contraction
A potential redex is either an actual redex or it is stuck. Each
of the operators in the syntax gives rise to a potential redex:
for additions, for sequencing, for intercepting interruptions, etc.:
datatype potential redex = PRSUM of value ∗ value

| PRSEQ of value ∗ term
| PRCATCH of value ∗ term
| PRBLOCK of term
| PRUNBLOCK of term
| PRERROR

fun reduce (t, s, is) (∗ : term ∗ status ∗ interrupts −> (term ∗ status ∗ interrupts) option ∗)
= let datatype intermediate result = STUCK | VALUE of value | TERM of term ∗ status ∗ interrupts

fun visit (LIT n) (∗ : term −> (term ∗ status ∗ interrupts) option ∗)
= VALUE (EXPECT n)

| visit (ADD (t1, t2))
= (case visit t1

of STUCK => STUCK
| VALUE v1 => (case visit t2

of STUCK => STUCK
| VALUE v2 => (case contract (PRSUM (v1, v2),

s, is)
of NONE

=> STUCK
| SOME (t’, s’, is’)
=> TERM (t’, s’, is’))

| TERM (t2’, s’, is’) => TERM (ADD (v2t v1, t2’), s’, is’))
| TERM (t1’, s’, is’) => TERM (ADD (t1’, t2), s’, is’))

| visit (SEQ (t1, t2))
= (case visit t1

of STUCK => STUCK
| VALUE v1 => (case contract (PRSEQ (v1, t2), s, is)

of NONE => STUCK
| SOME (t1’, s’, is’) => TERM (t1’, s’, is’))

| TERM (t1’, s’, is’) => TERM (SEQ (t1’, t2), s’, is’))
| visit (CATCH (t1, t2))
= (case visit t1

of STUCK => STUCK
| VALUE v1 => (case contract (PRCATCH (v1, t2), s, is)

of NONE => STUCK
| SOME (t’, s’, is’) => TERM (t’, s’, is’))

| TERM (t1’, s’, is’) => TERM (CATCH (t1’, t2), s’, is’))
| visit THROW
= VALUE EXCEPT

| visit (BLOCK t)
= (case contract (PRBLOCK t, s, is)

of NONE => STUCK
| SOME (t’, s’, is’) => TERM (t’, s’, is’))

| visit (UNBLOCK t)
= (case contract (PRUNBLOCK t, s, is)

of NONE => STUCK
| SOME (t’, s’, is’) => TERM (t’, s’, is’))

| visit ERROR
= (case contract (PRERROR, s, is)

of NONE => STUCK
| SOME (t’, s’, is’) => TERM (t’, s’, is’))

in case visit t
of STUCK => NONE

| VALUE v => SOME (v2t v, s, is)
| TERM (t, s’, is’) => SOME (t, s’, is’)

end

Figure 1. Functional implementation of a structural operational semantics: a one-step reduction function in direct style

The individual contractions are performed within a state, and
may change the status, but not the current stream of signals:

• an addition maps two expected numbers into their sum; other-
wise, either or both of the arguments are unexpected, and the
result is a throw operator; the status remains the same;

• sequencing from an expected number to a term yields this term;
otherwise, the first argument is unexpected and the result is a
throw operator; the status remains the same;

• intercepting an expected number yields this number, whereas
intercepting an exception yields the second argument of the
catch operator; the status remains the same;

• the blocking (resp. unblocking) operator yields a blocked (resp.
unblocked) status, irrespective of the previous status;

• the error operator is stuck and does not modify the status.

All potential redexes but the last one are thus actual redexes and
yield a contractum. Performing a contraction therefore optionally
maps a potential redex, a status, and a stream of signals into a term,
a status, and a stream of signals:
fun perform (PRSUM (EXPECT n1, EXPECT n2), s, is)

= SOME (LIT (n1 + n2), s, is)
| perform (PRSUM (,), s, is)
= SOME (THROW, s, is)

| perform (PRSEQ (EXPECT n, t), s, is)
= SOME (t, s, is)

| perform (PRSEQ (EXCEPT, t), s, is)
= SOME (THROW, s, is)

| perform (PRCATCH (EXPECT n, t), s, is)
= SOME (LIT n, s, is)

| perform (PRCATCH (EXCEPT, t), s, is)
= SOME (t, s, is)

fun reduce c (t, s, is) (∗ : term ∗ status ∗ interrupts −> answer ∗)
= let datatype intermediate result = VALUE of value | TERM of term ∗ status ∗ interrupts

fun visit (LIT n, k) (∗ : term ∗ (intermediate result −> answer) −> answer ∗)
= k (VALUE (EXPECT n)) (∗ where answer = (term ∗ status ∗ interrupts) option ∗)

| visit (ADD (t1, t2), k)
= visit (t1, fn VALUE v1

=> visit (t2, fn (VALUE v2)
=> (case contract (PRSUM (v1, v2), s, is)

of NONE => NONE
| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))

| (TERM (t2’, s’, is’))
=> k (TERM (ADD (v2t v1, t2’), s’, is’)))

| TERM (t1’, s’, is’)
=> k (TERM (ADD (t1’, t2), s’, is’)))

| visit (SEQ (t1, t2), k)
= visit (t1, fn VALUE v1

=> (case contract (PRSEQ (v1, t2), s, is)
of NONE => NONE

| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))
| TERM (t1’, s’, is’)
=> k (TERM (SEQ (t1’, t2), s’, is’)))

| visit (CATCH (t1, t2), k)
= visit (t1, fn VALUE v1

=> (case contract (PRCATCH (v1, t2), s, is)
of NONE => NONE

| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))
| TERM (t1’, s’, is’)
=> k (TERM (CATCH (t1’, t2), s’, is’)))

| visit (THROW, k)
= k (VALUE EXCEPT)

| visit (BLOCK t, k)
= (case contract (PRBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))

| visit (UNBLOCK t, k)
= (case contract (PRUNBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))

| visit (ERROR, k)
= (case contract (PRERROR, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => k (TERM (t’, s’, is’)))

in visit (t, fn VALUE v
=> SOME (v2t v, s, is)

| TERM (t, s’, is’)
=> SOME (t, s’, is’))

end

Figure 2. Continuation-passing counterpart of Figure 1 where the continuation is only applied to a value or a term

| perform (PRBLOCK t, s, is)
= SOME (t, B, is)

| perform (PRUNBLOCK t, s, is)
= SOME (t, U, is)

| perform (PRERROR, s, is)
= NONE

Overall, the following contraction function optionally maps a
potential redex, the current status, and the current stream of signals
to a term, a new status, and a new stream of signals, unless the
potential redex is stuck. An interruption raises an exception.

fun contract (pr, B, is)
= perform (pr, B, is)

| contract (pr, U, is)
= (case Signals.poll is (∗ <− polling ∗)

of (false, is’) (∗ <− no interruption ∗)
=> perform (pr, U, is’)

| (true, is’) (∗ <− an interruption ∗)
=> SOME (THROW, U, is’))

2.4 One-step reduction
We are now in position to write a total one-step reduction function
in direct style that implements a structural operational semantics,
as displayed in Figure 1. Computationally, a potential redex is
recursively searched depth-first and from left to right, and given
a term, a status, and a stream of signals, the one-step reduction
function produces the following term in the reduction sequence, if
there is any, together with a new status and a new stream of signals.

3. CPS transformation
In the one-step reduction function displayed in Figure 1, let us
transform visit into Continuation-Passing Style [22, 51, 56]. As
such, all its intermediate results are named, their computation is se-
quentialized, and continuations are introduced, yielding a definition
where all recursive calls are tail calls. In addition, rather than prop-
agating the stuck intermediate result all the way through the con-
tinuation, we directly map it to the final result NONE. The resulting
continuation-passing reduction function is displayed in Figure 2.

fun reduce c2 (t, s, is) (∗ : term ∗ status ∗ interrupts −> answer ∗)
= let fun visit (LIT n, kv, kt) (∗ : term ∗ (value −> answer) ∗ (term ∗ status ∗ interrupts −> answer)∗)

= kv (EXPECT n) (∗ −> answer ∗)
| visit (ADD (t1, t2), kv, kt) (∗ where answer = (term ∗ status ∗ interrupts) option ∗)
= visit (t1,

fn v1 => visit (t2,
fn v2 => (case contract (PRSUM (v1, v2), s, is)

of NONE => NONE
| SOME (t’, s’, is’) => kt (t’, s’, is’)),

fn (t2’, s’, is’) => kt (ADD (v2t v1, t2’), s’, is’)),
fn (t1’, s’, is’) => kt (ADD (t1’, t2), s’, is’))

| visit (SEQ (t1, t2), kv, kt)
= visit (t1,

fn v1 => (case contract (PRSEQ (v1, t2), s, is)
of NONE => NONE

| SOME (t’, s’, is’) => kt (t’, s’, is’)),
fn (t1’, s’, is’) => kt (SEQ (t1’, t2), s’, is’))

| visit (CATCH (t1, t2), kv, kt)
= visit (t1,

fn v1 => (case contract (PRCATCH (v1, t2), s, is)
of NONE => NONE

| SOME (t’, s’, is’) => kt (t’, s’, is’)),
fn (t1’, s’, is’) => kt (CATCH (t1’, t2), s’, is’))

| visit (THROW, kv, kt)
= kv EXCEPT

| visit (BLOCK t, kv, kt)
= (case contract (PRBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => kt (t’, s’, is’))

| visit (UNBLOCK t, kv, kt)
= (case contract (PRUNBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => kt (t’, s’, is’))

| visit (ERROR, kv, kt)
= (case (contract (PRERROR, s, is))

of NONE => NONE
| SOME (t’, s’, is’) => kt (t’, s’, is’))

in visit (t,
fn v => SOME (v2t v, s, is),
fn (t, s’, is’) => SOME (t, s’, is’))

end

Figure 3. Version of Figure 2 where the continuation is split into two

Since the CPS transformation is fully correct [51], reduce in
Figure 1 and reduce c in Figure 2 implement the same one-step
reduction function.

4. Splitting the continuation into two
In Figure 2, the continuation maps an intermediate result to an an-
swer. The intermediate result is a sum, and two radically distinct
things happen to each summand: in one case, the input term con-
tinues to be traversed in search for a redex; in the other, the output
term continues to be constructed. This distinctness prompts us to
make use of the type isomorphism between a sum-accepting func-
tion and a pair of functions and split the continuation into two:

(A1 + A2) → B ∼= (A1 → B) × (A2 → B)

The result is displayed in Figure 3. The first continuation is used to
continue the search for a redex and the second one is used to map a
contractum into the next term in the reduction sequence.

Since splitting the continuation is obviously correct, reduce c
in Figure 2 and reduce c2 in Figure 3 implement the same one-
step reduction function.

5. Defunctionalization
Let us defunctionalize the continuations of Figure 3 [26, 54]. To
this end, we partition their function space into a sum. This sum
is indexed by each of the functional abstractions fn ... => ...
that give rise to an inhabitant of that function space. We implement
this sum in the data type reduction context in Figure 4. This
data type is shared by the two continuations. It is interpreted, for
the first one, by the dispatch function apply kt, and for the second
one, by the function apply kv. Modulo renaming, each clause
of these apply functions is the body of a function abstraction in
Figure 3. For the rest, each function abstraction in Figure 3 is
replaced by a constructor of the data type reduction context,
and each application of a continuation in Figure 3 is replaced by a
call to the corresponding apply function. The resulting program is
first-order.

Since defunctionalization is fully correct [7,47,53], reduce c2
in Figure 3 and reduce c2d in Figure 4 implement the same one-
step reduction function.

fun reduce c2d (t, s, is) (∗ : term ∗ status ∗ interrupts −> answer ∗)
= let datatype reduction context = C EMPTY (∗ where answer = (term ∗ status ∗ interrupts) option ∗)

| C ADD1 of reduction context ∗ term
| C ADD2 of value ∗ reduction context
| C SEQ of reduction context ∗ term
| C CATCH of reduction context ∗ term

fun apply kt (C EMPTY, (t’, s’, is’)) (∗ : context ∗ (term ∗ status ∗ interrupts) −> answer ∗)
= SOME (t’, s’, is’)

| apply kt (C ADD1 (c, t2), (t1’, s’, is’))
= apply kt (c, (ADD (t1’, t2), s’, is’))

| apply kt (C ADD2 (v1, c), (t2’, s’, is’))
= apply kt (c, (ADD (v2t v1, t2’), s’, is’))

| apply kt (C SEQ (c, t2), (t1’, s’, is’))
= apply kt (c, (SEQ (t1’, t2), s’, is’))

| apply kt (C CATCH (c, t2), (t1’, s’, is’))
= apply kt (c, (CATCH (t1’, t2), s’, is’))

fun apply kv (C EMPTY, v) (∗ : context ∗ value −> answer ∗)
= SOME (v2t v, s, is)

| apply kv (C ADD1 (c, t2), v1)
= visit (t2, C ADD2 (v1, c))

| apply kv (C ADD2 (v1, c), v2)
= (case contract (PRSUM (v1, v2), s, is)

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

| apply kv (C SEQ (c, t2), v1)
= (case contract (PRSEQ (v1, t2), s, is)

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

| apply kv (C CATCH (c, t2), v1)
= (case contract (PRCATCH (v1, t2), s, is)

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

and visit (LIT n, c) (∗ : term ∗ context −> answer ∗)
= apply kv (c, EXPECT n)

| visit (ADD (t1, t2), c)
= visit (t1, C ADD1 (c, t2))

| visit (SEQ (t1, t2), c)
= visit (t1, C SEQ (c, t2))

| visit (CATCH (t1, t2), c)
= visit (t1, C CATCH (c, t2))

| visit (THROW, c)
= apply kv (c, EXCEPT)

| visit (BLOCK t, c)
= (case contract (PRBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

| visit (UNBLOCK t, c)
= (case contract (PRUNBLOCK t, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

| visit (ERROR, c)
= (case (contract (PRERROR, s, is))

of NONE => NONE
| SOME (t’, s’, is’) => apply kt (c, (t’, s’, is’)))

in visit (t, C EMPTY)
end

Figure 4. Defunctionalized counterpart of Figure 3, where kv and kt share the same data type of reduction contexts

The name reduction context already says it: this data type
is that of the reduction contexts. Also, apply kt can be identified
as the traditional ‘plug’ function of a reduction semantics that fills a
reduction context with a contractum and yields the next term in the
reduction sequence. In fact, Figure 4 displays an implementation (a
big-step one, by Reynolds’s book and according to the diagram of
Section 1) of a reduction semantics.

We refactor this implementation in Figure 5, renaming, e.g.,
apply kt into plug to make that property even more manifest.

datatype reduction context = C EMPTY
| C ADD1 of reduction context ∗ term
| C ADD2 of value ∗ reduction context
| C SEQ of reduction context ∗ term
| C CATCH of reduction context ∗ term

fun plug (C EMPTY, t’) (∗ : context ∗ term −> term ∗)
= t’

| plug (C ADD1 (c, t2), t1’)
= plug (c, ADD (t1’, t2))

| plug (C ADD2 (v1, c), t2’)
= plug (c, ADD (v2t v1, t2’))

| plug (C SEQ (c, t2), t1’)
= plug (c, SEQ (t1’, t2))

| plug (C CATCH (c, t2), t1’)
= plug (c, CATCH (t1’, t2))

datatype value or decomposition = VAL of value | DEC of potential redex ∗ reduction context

fun decompose’ (LIT n, c) (∗ : term ∗ context −> value or decomposition ∗)
= decompose’ aux (c, EXPECT n)

| decompose’ (ADD (t1, t2), c)
= decompose’ (t1, C ADD1 (c, t2))

| decompose’ (SEQ (t1, t2), c)
= decompose’ (t1, C SEQ (c, t2))

| decompose’ (CATCH (t1, t2), c)
= decompose’ (t1, C CATCH (c, t2))

| decompose’ (THROW, c)
= decompose’ aux (c, EXCEPT)

| decompose’ (BLOCK t, c)
= DEC (PRBLOCK t, c)

| decompose’ (UNBLOCK t, c)
= DEC (PRUNBLOCK t, c)

| decompose’ (ERROR, c)
= DEC (PRERROR, c)

and decompose’ aux (C EMPTY, v) (∗ : context ∗ value −> value or decomposition ∗)
= VAL v

| decompose’ aux (C ADD1 (c, t2), v1)
= decompose’ (t2, C ADD2 (v1, c))

| decompose’ aux (C ADD2 (v1, c), v2)
= DEC (PRSUM (v1, v2), c)

| decompose’ aux (C SEQ (c, t2), v1)
= DEC (PRSEQ (v1, t2), c)

| decompose’ aux (C CATCH (c, t2), v1)
= DEC (PRCATCH (v1, t2), c)

fun decompose t (∗ : term −> value or decomposition ∗)
= decompose’ (t, C EMPTY)

fun reduce (t, s, is) (∗ : term ∗ status ∗ interrupts −> (term ∗ status ∗ interrupts) option ∗)
= (case decompose t

of VAL v => SOME (v2t v, s, is)
| DEC (pr, c) => (case contract (pr, s, is)

of NONE => NONE
| SOME (t’, s’, is’) => SOME (plug (c, t’), s’, is’)))

Figure 5. Refactored version of Figure 4, where apply kt is lambda-dropped [28] and renamed into plug, an intermediate data type of
values or decompositions is introduced, and visit and apply kv are renamed into decompose’ and decompose’ aux and made to yield
a value or a decomposition. The result is the functional implementation of a reduction semantics [29, 30]

Visually, Figure 5 implements the following diagram:

◦

decompose

!!B
BB

BB
BB

B ◦

◦
contract

// ◦

plug
==||||||||

• A value is mapped into itself.
• A non-value term is decomposed into a potential redex and its

reduction context. If the potential redex is an actual one, it is
contracted and the contractum is plugged into the reduction
context, yielding the next term in the reduction sequence. Oth-
erwise, the term is stuck and the reduction sequence stops there.

Evaluation is then traditionally defined as iterated reduction:
◦

decompose

!!B
BB

BB
BB

B ◦

decompose

!!B
BB

BB
BB

B ◦

◦
contract

// ◦

plug
==||||||||

◦
contract

// ◦

plug
==||||||||

As pointed out by Nielsen and the author [27], the intermediate
terms in the reduction sequence can be deforested away by refocus-
ing from the site of a redex directly to the site of the next redex in
the reduction sequence:
◦

decompose

!!B
BB

BB
BB

B ◦

decompose

!!B
BB

BB
BB

B ◦

//___ ◦
contract

// ◦

plug
==||||||||

refocus
//_______ ◦

contract
// ◦

plug
==||||||||

As generously illustrated elsewhere [10, 11, 20, 27], such a re-
focused evaluation function implements a small-step abstract ma-
chine. As shown by Millikin and the author [25], fusing the iter-
ation function and the move function of this yields the functional
implementation of a big-step abstract machine. In the present case,
this big-step abstract machine essentially coincides with Hutton
and Wright’s, and one is then back in known territory [3]: the func-
tional implementation of the big-step abstract machine is in defunc-
tionalized form and can thus be refunctionalized [24]; the refunc-
tionalized version is in CPS and can thus be mapped back to direct
style [18]; and the result is essentially a functional implementation
of Hutton and Wright’s natural semantics. We are then in position
to answer Hutton and Wright’s question about the meaning of in-
terruptions with a variety of inter-derivable semantic artifacts (i.e.,
man-made-constructs).

6. A context-sensitive reduction semantics for
arithmetic expressions with interruptions and
errors

In the previous sections, we have derived the functional implemen-
tation of a reduction semantics out of the functional implementa-
tion of a structural operational semantics by CPS transformation
and defunctionalization. Except for the usual device, in Figure 2, of
not applying the current continuation when getting stuck in a con-
traction, we have not made much use of continuations. One could,
however, and as pioneered by Felleisen in his PhD thesis [29], make
the contraction function context sensitive by passing it the current
reduction context and acting on it when raising an exception, e.g.,
to short-cut the syntactic propagation of the exceptions (not just of
the errors) towards the root of the term.

In this section, we outline such a context-sensitive reduction se-
mantics. In doing so, we leave the range of CPS-transformed and
defunctionalized structural operational semantics; and symmetri-
cally, on the other side of refocusing and fusion by fixed-point pro-
motion, we distance ourselves from a big-step abstract machine in
defunctionalized form.

6.1 Abstract syntax (terms and values)
6.1.1 Terms
The terms are the same as in Section 2.2.1.

6.1.2 Notion of value
In contrast to Section 2.2.2, a value is simply an integer:
type value = int

Embedding a value into a term therefore amounts to quoting it, as
it were:

fun v2t n = LIT n

6.2 Notion of context-sensitive contraction
We now interpret the throw operator as a redex:
datatype potential redex = PRSUM of value ∗ value

| PRSEQ of value ∗ term
| PRCATCH of value ∗ term
| PRTHROW
| PRBLOCK of term
| PRUNBLOCK of term
| PRERROR

The simpler values of Section 6.1.2 makes for simpler individ-
ual contractions than in Section 2.3. The status may be changed,
but not the current stream of signals:

• an addition maps two numbers into their sum; the status remains
the same;

• sequencing from a number to a term yields this term; the status
remains the same;

• a catch operator is only contracted if there has been no excep-
tion; the status remains the same;

• a throw operator unwinds the current context to emptiness or to
the first catch handler:

fun unwind C EMPTY
= NONE

| unwind (C ADD1 (c, t2))
= unwind c

| unwind (C ADD2 (v1, c))
= unwind c

| unwind (C SEQ (c, t2))
= unwind c

| unwind (C CATCH (c, t2))
= SOME (t2, c)

the status remains the same;
• as before, the blocking (resp. unblocking) operator yields a

blocked (resp. unblocked) status, irrespective of the previous
status;

• the error operator is stuck and does not modify the status.

All potential redexes but the last one are thus actual redexes and
yield a contractum. Performing a contraction therefore optionally
maps a potential redex, a status, a stream of signals, and a reduction
context into a term, a status, a stream of signals, and a reduction
context:

fun perform (PRSUM (n1, n2), s, is, c)
= SOME (LIT (n1 + n2), s, is, c)

| perform (PRSEQ (n, t), s, is, c)
= SOME (t, s, is, c)

| perform (PRCATCH (n, t), s, is, c)
= SOME (LIT n, s, is, c)

| perform (PRTHROW, s, is, c)
= (case unwind c

of NONE
=> SOME (THROW, s, is, C EMPTY)

| SOME (t’, c’)
=> SOME (t’, s, is, c’))

| perform (PRBLOCK t, s, is, c)
= SOME (t, B, is, c)

| perform (PRUNBLOCK t, s, is, c)
= SOME (t, U, is, c)

| perform (PRERROR, s, is, c)
= NONE

Overall, the following context-sensitive contraction function1

optionally maps a potential redex, the current status, the current
stream of signals, and the current reduction context to a term, a
new status, a new stream of signals, and a new reduction context,
unless the potential redex is stuck:
fun contract (pr, B, is, c)

= perform (pr, B, is, c)
| contract (pr, U, is, c)
= (case Signals.poll is (∗ <− polling ∗)

of (false, is’) (∗ <− no interruption ∗)
=> perform (pr, U, is’, c)

| (true, is’) (∗ <− an interruption ∗)
=>
(case unwind c

of NONE
=> SOME (THROW, U, is’, C EMPTY)

| SOME (t’, c’)
=> SOME (t’, U, is’, c’)))

The key new point is that if an interruption is detected, it is still
treated by raising an exception but this treatment is carried out on
the spot by unwinding the context in search of a catch handler or
until the context is exhausted.

In fine, given the corresponding decomposition and plugging
functions, we can implement the one-step reduction function as
follows:
fun reduce (t, s, is)

= (case decompose t
of VAL v

=> SOME (v2t v, s, is)
| DEC (pr, c)
=> (case contract (pr, s, is, c)

of NONE
=> NONE

| SOME (t’, s’, is’, c’)
=> SOME (plug (c’, t’),

s’, is’)))

Proving the equivalence of this context-sensitive reduction seman-
tics and of the previous context-insensitive one takes a degree of
going. Specifically, one needs to relate the propagation of excep-
tions in the two semantics.

7. From reduction semantics to abstract machine
Based on the context-sensitive reduction semantics of Section 6, we
define evaluation as iterated reduction (Section 7.1). To exemplify
that this evaluation function always composes the decomposition
function and the plug function, we replace this composition by a
call to a dedicated ‘refocus’ function (Section 7.2). We then define
a more efficient version of the refocus function (Section 7.3).

7.1 Reduction-based evaluation
Evaluation can yield an integer, as expected from an arithmetic
expression, or an uncaught exception:
datatype result = EXPECT of int | EXCEPT

It can also become stuck.
We define evaluation by iterating over the result of decomposi-

tion. The following function optionally maps a value or a decom-
position, a status, and a stream of signals to a result, a status, and a
stream of signals:
fun iterate (VAL n, s, is)

= SOME (EXPECT n, s, is)

1 Reminder: This contraction function is context-sensitive because it is
passed the reduction context and acts on it.

| iterate (DEC (pr, c), s, is)
= (case contract (pr, s, is, c)

of NONE
=> NONE

| SOME (THROW, s’, is’, C EMPTY)
=> SOME (EXCEPT, s’, is’)

| SOME (t’, s’, is’, c’)
=> iterate (decompose

(plug (c’, t’)),
s’, is’))

fun evaluate (t, s, is)
= iterate (decompose t, s, is)

7.2 Towards refocusing
We exemplify that the evaluation function of Section 7.1 always
composes decompose and plug by defining a dedicated function
implementing this composition:
fun refocus (t, c)

= decompose (plug (c, t))

We then adjust the evaluation function to use refocus:
fun iterate (VAL n, s, is)

= SOME (EXPECT n, s, is)
| iterate (DEC (pr, c), s, is)
= (case contract (pr, s, is, c)

of NONE
=> NONE

| SOME (THROW, s’, is’, C EMPTY)
=> SOME (EXCEPT, s’, is’)

| SOME (t’, s’, is’, c’)
=> iterate (refocus (t’, c’),

s’, is’))

fun evaluate (t, s, is)
= iterate (refocus (t, C EMPTY),

s, is)

Morally, the initial call to iterate, in Section 7.1 did compose
decompose and plug since plugging a term in an empty context
yields this term.

7.3 Reduction-free evaluation
With the purpose of refocusing, the decomposition function is most
conveniently defined as in Figure 5, i.e., as a pair of functions
decompose’ that iteratively decomposes a term and accumulates
a context until it reaches a value, and decompose’ aux that dis-
patches on the context. Indeed, optimal refocusing consists in con-
tinuing the decomposition in the current context [27], and therefore
refocus can be defined as decompose’:
fun refocus (t, c)

= decompose’ (t, c)

The result is a small-step abstract machine that alternatively re-
focuses and contracts. This abstract machine is reduction free be-
cause it does not construct the intermediate terms in the reduction
sequence. It also naturally embodies the optimization enabled by
context sensitivity and described in Section 6.2.

8. Conclusion and perspectives
Over the last years, we have observed the following facts and drawn
the following lessons:
Abstract machines: Abstract machines form a natural meet-
ing ground between theoretically minded and practically moti-
vated language designers and developers. They are both ‘practical
enough’ to make theoretical results flow into practice and ‘theoret-
ical enough’ to direct that flow.

Abstract vs. virtual machines: Earlier on [2], we candidly pointed
at the difference between abstract machines, that directly operate
on terms (e.g., the CEK machine), and virtual machines, that oper-
ate on byte code resulting from compiling a term (e.g., the JVM):

source term
compile

//

interpret

$$JJJJJJJJJJJJJJJJJJJ byte code

run

��
result

We furthermore observed that in several cases (e.g., William Burge
and Peter Henderson’s compiler for the SECD machine and Xavier
Leroy’s compiler for the Krivine machine), the byte code could be
deforested and the original abstract machine could be recovered.
We applied this deforestation idea to Guy Cousineau, Pierre-Louis
Curien, and Michel Mauny’s Categorical Abstract Machine as well
as to David Schmidt’s compiler for the VEC machine. In both
cases, we obtained an abstract machine that, on one hand, was in
the range of refocusing and transition compression, and on the other
hand, was in the range of defunctionalization.

In our experience, designing the instruction set of a virtual ma-
chine is powerfully helped by (1) identifying common sequences
of contractions in reduction semantics and of transitions in abstract
machines, and (2) factoring combinators out of compositional eval-
uation functions, following Mitchell Wand’s path-breaking work on
combinator-based compilers in the early 1980’s [61–64].

From big-step semantics to abstract machine: a functional cor-
respondence. As initiated by Reynolds, closure conversion, CPS
transformation, and defunctionalization make it possible to map a
recursive program into the functional implementation of an abstract
machine. (If the initial program is block-structured, just lambda-lift
it [39].) This combination of transformations can also be used for
deriving or relating programs [24,26,60] and is used today, e.g., for
web programming [32] and for type inference [43].

From small-step semantics to abstract machine: a syntactic cor-
respondence. Refocusing a reduction semantics and compressing
transitions mechanically yield practical abstract machines [20].

Explicit substitutions: For weak-head normalization, Curien’s
original calculus of closures [17] gives rise to a variety of practical
abstract machines with environments [10].

Computational effects: On one hand, parameterizing evaluation
functions with monads, and on the other hand, making contrac-
tion functions context sensitive, and using the two correspondence
mentioned just above yield the same abstract machines. This co-
incidence scales to classical effects [5, 9, 46] as well as to unusual
ones, such as delimited continuations, properly tail-recursive stack
inspection, compound monadic effects, and call by need [4,5,9,11].

Applicability: Both the functional correspondence and the syn-
tactic correspondence apply to a host of known machines: SECD,
CEK, KAM, CLS, CAM, ZINC, etc. as well as to new machines.
It also scales to full normalization (as in ‘normalization by evalua-
tion’), objects [23, 38], and the stochastic π-calculus.

In general, the two correspondences provide guidelines in the
jungle of semantic artifacts. As Biernacka and the author face-
tiously put it [11]:

Call/cc was introduced in Scheme [15] as a Church encod-
ing of Reynolds’s escape operator [54]. A typed version
of it is available in Standard ML of New Jersey [34] and
Griffin has identified its logical content [33]. It is endowed

with a variety of specifications: a CPS transformation [22],
a CPS interpreter [35, 54], a denotational semantics [41],
a computational monad [59], a big-step operational seman-
tics [34], the CEK machine [31], calculi in the form of re-
duction semantics [30], and a number of implementation
techniques [16, 19, 36]—not to mention its call-by-name
variant in the archival version of Krivine’s machine [42].
Question: How do we know that all the artifacts in this
semantic jungle define the same call/cc?

Our answer here: We know for sure when the representation of
these semantic artifacts are inter-derivable.
Contexts: Contexts, like zipper data structures, are defunctional-
ized continuations: of an evaluation function for evaluation con-
texts, and of a one-step reduction function for reduction contexts.
They are also in 1-to-1 correspondence with the compatibility rules
in a calculus. In fact, the coincidence between the data types of
reduction contexts and of evaluation contexts is pivotal in the cor-
respondence between reduction orders (e.g., normal order, applica-
tive order) and evaluation orders (e.g., call by name, call by value)
that Gordon Plotkin discovered in “Call-by-name, call-by-value,
and the λ-calculus” [51] and that the author and his students have
materialized with the inter-derivations illustrated here.
Defining contexts and proving unique decomposition: As de-
functionalized continuations, contexts can be mechanically defined
out of a compositional function (e.g., one that searches for the first
potential redex in a term, or an ordinary evaluation function). The
unique decomposition property then holds as a corollary.
Open problem: We observe that (1) abstract machines can be ob-
tained by CPS-transforming and defunctionalizing a compositional
evaluation function, (2) reasoning about compositional evaluation
functions is usually done by structural induction, possibly with an
additional relation, and (3) reasoning about abstract machines is
usually done using a well-founded order. Since finding such a well-
founded order requires ingenuity, to which extent could one be in-
duced by defunctionalizing a compositional evaluation function?
Parting thought: To close, we would like to underline the re-
markable effectiveness of explicit substitutions (Curien, Lévy,
Hardin, Abadi, Cardelli, etc.), refocusing, CPS (Strachey, Wads-
worth, Reynolds, Plotkin, Steele, Friedman, Wand, Shivers, etc.),
and defunctionalization (Landin, Reynolds) when considering pro-
grams as data objects.
Acknowledgments
The author is grateful to the members and chair of the ICFP’08 pro-
gram committee for their invitation to present the present material.
Thanks are also due to Mads Sig Ager, Małgorzata Biernacka, Dar-
iusz Biernacki, Jan Midtgaard, Kevin Millikin, and Lasse Nielsen
for the joint ride, and to Kenichi Asai, Jacob Johannsen, Johan
Munk, and Ian Zerny for precious and timely comments. The run-
ning example of arithmetic expressions with interrupts and errors
was developed after hours while attending AFP 2008. This work is
partly supported by the Danish Natural Science Research Council,
Grant no. 21-03-0545.

References
[1] Mads Sig Ager. Partial Evaluation of String Matchers & Con-

structions of Abstract Machines. PhD thesis, BRICS PhD School,
University of Aarhus, Aarhus, Denmark, January 2006.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
From interpreter to compiler and virtual machine: a functional
derivation. Research Report BRICS RS-03-14, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, March
2003.

[3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract
machines. In Dale Miller, editor, Proceedings of the Fifth ACM-
SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden,
August 2003. ACM Press.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between call-by-need evaluators and lazy abstract
machines. Information Processing Letters, 90(5):223–232, 2004.
Extended version available as the research report BRICS RS-04-3.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between monadic evaluators and abstract machines
for languages with computational effects. Theoretical Computer
Science, 342(1):149–172, 2005. Extended version available as the
research report BRICS RS-04-28.

[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis,
Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The PoplMark challenge.
In Joe Hurd and Thomas F. Melham, editors, Theorem Proving in
Higher Order Logics, 18th International Conference, TPHOLs 2005,
number 3603 in Lecture Notes in Computer Science, pages 50–65,
Oxford, UK, August 2005. Springer.

[7] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design
and correctness of program transformations based on control-
flow analysis. In Naoki Kobayashi and Benjamin C. Pierce,
editors, Theoretical Aspects of Computer Software, 4th International
Symposium, TACS 2001, number 2215 in Lecture Notes in Computer
Science, pages 420–447, Sendai, Japan, October 2001. Springer-
Verlag.

[8] Małgorzata Biernacka. A Derivational Approach to the Operational
Semantics of Functional Languages. PhD thesis, BRICS PhD School,
University of Aarhus, Aarhus, Denmark, January 2006.

[9] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An
operational foundation for delimited continuations in the CPS
hierarchy. Logical Methods in Computer Science, 1(2:5):1–39,
November 2005.

[10] Małgorzata Biernacka and Olivier Danvy. A concrete framework
for environment machines. ACM Transactions on Computational
Logic, 9(1):1–30, 2007. Article #6. Extended version available as the
research report BRICS RS-06-3.

[11] Małgorzata Biernacka and Olivier Danvy. A syntactic correspondence
between context-sensitive calculi and abstract machines. Theoretical
Computer Science, 375(1-3):76–108, 2007. Extended version
available as the research report BRICS RS-06-18.

[12] Dariusz Biernacki. The Theory and Practice of Programming
Languages with Delimited Continuations. PhD thesis, BRICS PhD
School, University of Aarhus, Aarhus, Denmark, December 2005.

[13] Dariusz Biernacki and Olivier Danvy. From interpreter to logic
engine by defunctionalization. In Maurice Bruynooghe, editor, Logic
Based Program Synthesis and Transformation, 13th International
Symposium, LOPSTR 2003, number 3018 in Lecture Notes in
Computer Science, pages 143–159, Uppsala, Sweden, August 2003.
Springer-Verlag.

[14] John Clements and Matthias Felleisen. A tail-recursive semantics for
stack inspection. ACM Transactions on Programming Languages and
Systems, 26(6):1029–1052, 2004.

[15] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme
for a higher-level semantic algebra. In John Reynolds and Maurice
Nivat, editors, Algebraic Methods in Semantics, pages 237–250.
Cambridge University Press, 1985.

[16] William Clinger, Anne H. Hartheimer, and Eric M. Ost. Imple-
mentation strategies for first-class continuations. Higher-Order and
Symbolic Computation, 12(1):7–45, 1999. A preliminary version
was presented at the 1988 ACM Conference on Lisp and Functional
Programming.

[17] Pierre-Louis Curien. An abstract framework for environment
machines. Theoretical Computer Science, 82:389–402, 1991.

[18] Olivier Danvy. Back to direct style. Science of Computer
Programming, 22(3):183–195, 1994. A preliminary version was
presented at ESOP 1992.

[19] Olivier Danvy. Formalizing implementation strategies for first-
class continuations. In Gert Smolka, editor, Proceedings of the
Ninth European Symposium on Programming (ESOP 2000), number
1782 in Lecture Notes in Computer Science, pages 88–103, Berlin,
Germany, March 2000. Springer-Verlag.

[20] Olivier Danvy. From reduction-based to reduction-free normalization.
In Sergio Antoy and Yoshihito Toyama, editors, Proceedings of the
Fourth International Workshop on Reduction Strategies in Rewriting
and Programming (WRS’04), volume 124(2) of Electronic Notes in
Theoretical Computer Science, pages 79–100, Aachen, Germany,
May 2004. Elsevier Science. Invited talk.

[21] Olivier Danvy. An Analytical Approach to Program as Data Objects.
DSc thesis, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, October 2006.

[22] Olivier Danvy and Andrzej Filinski. Representing control, a study
of the CPS transformation. Mathematical Structures in Computer
Science, 2(4):361–391, 1992.

[23] Olivier Danvy and Jacob Johannsen. Inter-deriving semantic
artifacts for object-oriented programming. In Wilfrid Hodges and
Ruy de Queiroz, editors, Proceedings of the 15th Workshop on
Logic, Language, Information and Computation (WoLLIC 2008),
number 5110 in Lecture Notes in Artificial Intelligence, pages 1–16,
Edinburgh, Scotland, July 2008. Springer-Verlag. Invited talk.

[24] Olivier Danvy and Kevin Millikin. Refunctionalization at work.
Research Report BRICS RS-08-4, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, August 2007. To appear in
Science of Computer Programming, extended version.

[25] Olivier Danvy and Kevin Millikin. On the equivalence between
small-step and big-step abstract machines: a simple application of
lightweight fusion. Information Processing Letters, 106(3):100–109,
2008.

[26] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Harald Søndergaard, editor, Proceedings of the Third International
ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP’01), pages 162–174, Firenze, Italy, September
2001. ACM Press. Extended version available as the research report
BRICS RS-01-23.

[27] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction seman-
tics. Research Report BRICS RS-04-26, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, November 2004.
A preliminary version appeared in the informal proceedings of the
Second International Workshop on Rule-Based Programming (RULE
2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.

[28] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming
recursive equations into programs with block structure. Theoretical
Computer Science, 248(1-2):243–287, 2000. A preliminary version
was presented at the 1997 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM
1997).

[29] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Program-
ming Languages. PhD thesis, Computer Science Department, Indiana
University, Bloomington, Indiana, August 1987.

[30] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Unpublished lecture notes available at <http:
//www.ccs.neu.edu/home/matthias/3810-w02/readings.
html> and last accessed in April 2008, 1989-2001.

[31] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD machine, and the λ-calculus. In Martin Wirsing, editor, Formal
Description of Programming Concepts III, pages 193–217. Elsevier
Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[32] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Automatically restructuring programs for the
web. In Martin S. Feather and Michael Goedicke, editors, 16th IEEE
International Conference on Automated Software Engineering (ASE
2001), pages 211–222, Coronado Island, San Diego, California, USA,
November 2001. IEEE Computer Society.

[33] Timothy G. Griffin. A formulae-as-types notion of control. In
Paul Hudak, editor, Proceedings of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, pages 47–58,
San Francisco, California, January 1990. ACM Press.

[34] Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-
class continuations in ML. Journal of Functional Programming,
3(4):465–484, October 1993.

[35] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand.
Continuations and coroutines. In Guy L. Steele Jr., editor, Conference
Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 293–298, Austin, Texas, August 1984. ACM
Press.

[36] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing
control in the presence of first-class continuations. In Bernard
Lang, editor, Proceedings of the ACM SIGPLAN’90 Conference
on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June
1990. ACM Press.

[37] Graham Hutton and Joel Wright. What is the meaning of these
constant interruptions? Journal of Functional Programming,
17(6):777–792, 2007.

[38] Jacob Johannsen. An investigation of Abadi and Cardelli’s untyped
calculus of objects. Master’s thesis, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, June 2008. BRICS research
report RS-08-6.

[39] Thomas Johnsson. Lambda lifting: Transforming programs to
recursive equations. In Jean-Pierre Jouannaud, editor, Functional
Programming Languages and Computer Architecture, number 201 in
Lecture Notes in Computer Science, pages 190–203, Nancy, France,
September 1985. Springer-Verlag.

[40] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy
Vidal-Naquet, and Martin Wirsing, editors, Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science,
number 247 in Lecture Notes in Computer Science, pages 22–39,
Passau, Germany, February 1987. Springer-Verlag.

[41] Richard Kelsey, William Clinger, and Jonathan Rees, editors.
Revised5 report on the algorithmic language Scheme. Higher-Order
and Symbolic Computation, 11(1):7–105, 1998.

[42] Jean-Louis Krivine. A call-by-name lambda-calculus machine.
Higher-Order and Symbolic Computation, 20(3):199–207, 2007.

[43] George Kuan and David MacQueen. Efficient type inference using
ranked type variables. In Claudio Russo and Derek Dreyer, editors,
Record of the 1998 ACM SIGPLAN Workshop on ML, pages 3–14,
Freiburg, Germany, October 2007.

[44] Jan Midtgaard. Transformation, Analysis, and Interpretation of
Higher-Order Procedural Programs. PhD thesis, BRICS PhD School,
University of Aarhus, Aarhus, Denmark, June 2007.

[45] Kevin Millikin. A Structured Approach to the Transformation,
Normalization and Execution of Computer Programs. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark, May
2007.

[46] Johan Munk. A study of syntactic and semantic artifacts and its
application to lambda definability, strong normalization, and weak
normalization in the presence of state. Master’s thesis, Department
of Computer Science, University of Aarhus, Aarhus, Denmark, May
2007. BRICS research report RS-08-3.

[47] Lasse R. Nielsen. A denotational investigation of defunctionalization.
Research Report BRICS RS-00-47, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, December 2000.

[48] Lasse R. Nielsen. A study of defunctionalization and continuation-
passing style. PhD thesis, BRICS PhD School, University of Aarhus,
Aarhus, Denmark, July 2001. BRICS DS-01-7.

[49] Hanne Riis Nielson and Flemming Nielson. Semantics with
Applications, a formal introduction. Wiley Professional Computing.
John Wiley and Sons, 1992.

[50] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point
promotion. In Matthias Felleisen, editor, Proceedings of the Thirty-
Fourth Annual ACM Symposium on Principles of Programming
Languages, SIGPLAN Notices, Vol. 42, No. 1, pages 143–154, New
York, NY, USA, January 2007. ACM Press.

[51] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[52] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report FN-19, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, September 1981.

[53] François Pottier and Nadji Gauthier. Polymorphic typed defunctional-
ization and concretization. Higher-Order and Symbolic Computation,
19(1):125–162, 2006. A preliminary version was presented at the
Thirty-First Annual ACM Symposium on Principles of Programming
Languages (POPL 2004).

[54] John C. Reynolds. Definitional interpreters for higher-order
programming languages. In Proceedings of 25th ACM National
Conference, pages 717–740, Boston, Massachusetts, 1972. Reprinted
in Higher-Order and Symbolic Computation 11(4):363–397, 1998,
with a foreword [55].

[55] John C. Reynolds. Definitional interpreters revisited. Higher-Order
and Symbolic Computation, 11(4):355–361, 1998.

[56] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s
thesis, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 1978. Technical report
AI-TR-474.

[57] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. The MIT Press, 1977.

[58] Alan Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(2):230–265, 1936-37. Corrections in Volume 43, pages
544-546, 1937.

[59] Philip Wadler. The essence of functional programming (invited talk).
In Andrew W. Appel, editor, Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Programming Languages, pages
1–14, Albuquerque, New Mexico, January 1992. ACM Press.

[60] Mitchell Wand. Continuation-based program transformation strate-
gies. Journal of the ACM, 27(1):164–180, January 1980.

[61] Mitchell Wand. Deriving target code as a representation of
continuation semantics. ACM Transactions on Programming
Languages and Systems, 4(3):496–517, 1982.

[62] Mitchell Wand. Semantics-directed machine architecture. In Richard
DeMillo, editor, Proceedings of the Ninth Annual ACM Symposium
on Principles of Programming Languages, pages 234–241. ACM
Press, January 1982.

[63] Mitchell Wand. A semantic prototyping system. In Susan L.
Graham, editor, Proceedings of the 1984 Symposium on Compiler
Construction, SIGPLAN Notices, Vol. 19, No 6, pages 213–221,
Montréal, Canada, June 1984. ACM Press.

[64] Mitchell Wand. From interpreter to compiler: a representational
derivation. In Harald Ganzinger and Neil D. Jones, editors, Programs
as Data Objects, number 217 in Lecture Notes in Computer Science,
pages 306–324, Copenhagen, Denmark, October 1985. Springer-
Verlag.

[65] Glynn Winskel. The Formal Semantics of Programming Languages.
Foundation of Computing Series. The MIT Press, 1993.

