
A Synthetic Operational Account of Call-by-Need Evaluation

Olivier Danvy
Department of Computer Science, Aarhus University

danvy@cs.au.dk

Ian Zerny ∗

Department of Computer Science, Aarhus University †

ian@zerny.dk

Abstract
We present the first operational account of call by need that con-
nects syntactic theory and implementation practice. Syntactic the-
ory: the storeless operational semantics using syntax rewriting to
account for demand-driven computation and for caching intermedi-
ate results. Implementational practice: the store-based operational
technique using memo-thunks to implement demand-driven com-
putation and to cache intermediate results for subsequent shar-
ing. The implementational practice was initiated by Landin and
Wadsworth and is prevalent today to implement lazy programming
languages such as Haskell. The syntactic theory was initiated by
Ariola, Felleisen, Maraist, Odersky and Wadler and is prevalent to-
day to reason equationally about lazy programs, on par with Baren-
dregt et al.’s term graphs. Nobody knows, however, how the theory
of call by need compares to the practice of call by need: all that is
known is that the theory of call by need agrees with the theory of
call by name, and that the practice of call by need optimizes the
practice of call by name.

Our operational account takes the form of three new calculi
for lazy evaluation of lambda-terms and our synthesis takes the
form of three lock-step equivalences. The first calculus is a hered-
itarily compressed variant of Ariola et al.’s call-by-need lambda-
calculus and makes “neededness” syntactically explicit. The second
calculus distinguishes between strict bindings (which are induced
by demand-driven computation) and non-strict bindings (which
are used for caching intermediate results). The third calculus uses
memo-thunks and an algebraic store. The first calculus syntacti-
cally corresponds to a storeless abstract machine, the second to an
abstract machine with local stores, and the third to a lazy Kriv-
ine machine, i.e., a traditional store-based abstract machine im-
plementing lazy evaluation. The machines are intensionally com-
patible with extensional reasoning about lazy programs and they
are lock-step equivalent. Each machine functionally corresponds to
a natural semantics for call by need in the style of Launchbury,
though for non-preprocessed λ-terms.

Our results reveal a genuine and principled unity of computa-
tional theory and computational practice, one that readily applies
to variations on the general theme of call by need.

∗Recipient of the Google Europe Fellowship in Programming Technology.
This research is supported in part by this Google Fellowship.
†New affiliation as of June 2013: Google

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP ’13, September 16-18 2013, Madrid, Spain. Copyright is held by the
owner/author(s). Publication rights licensed to ACM.
Copyright c© ACM 978-1-4503-2154-9/13/09 . . . $15.00.
http://dx.doi.org/10.1145/2505879.2505884.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.1.1 [Com-
putation by Abstract Devices]: Models of Computation; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms languages, theory

Keywords abstract machines, call by need, functional correspon-
dence, lazy evaluation, natural semantics, reduction semantics, syn-
tactic correspondence, syntactic theories

1. Introduction
Seen in the historical HAKMEM report [11, Item 101B]:

Let x be a continued fraction
p0 + q0/(p1 + q1/(...)) = p0 + q0/x’

where x’ is again a continued fraction
and the p’s and q’s are integers. [...]
Instead of a list of p’s and q’s,
let x be a subroutine
producing its next p and q each time it is called.
Thus on its first usage, x will "output" p0 and q0
and, in effect, change itself into x’.

Lovely example of a lazy list and of its evaluation, isn’t it? And to
think it was programmed in assembly language too...

But what is lazy evaluation? Lazy evaluation is an embodiment
of computation on demand and of memoization of intermediate re-
sults for subsequent reuse, in case of subsequent similar demands.
In the λ-calculus, lazy evaluation improves the standard reduction
of λ-terms. In functional programming languages, lazy evaluation
is implemented by passing actual parameters “by need” both to
user-defined functions and to data constructors. Call by need is
traditionally implemented with memo-thunks, as in Gosper’s pro-
cedural representation of continued fractions above: parameterless
procedures that delay computation and which, when forced, mem-
oize their result in the store. And indeed lazy abstract machines
canonically use a store to manage memo-thunks. Alternatively, they
use updateable graphs rather than abstract-syntax trees, in which
case these graphs play the rôle of the store [22, 23]. Today, the
best-known such store-based abstract machine is probably Peyton
Jones’s Spineless Tagless G-Machine [38], which is the run-time
system of the Glasgow Haskell compiler.

Does this mean that a store is inherently necessary to account for
lazy evaluation? Perhaps surprisingly, the answer is no: in the mid-
1990’s [6], in a simultaneous tour de force, Ariola and Felleisen [5]
and Maraist, Odersky and Wadler [34] provided a purely syntactic,
storeless operational account of call by need.

So what has happened since? Somewhat unexpectedly, the
store-based implementation technique of using memo-thunks and
the storeless operational account of call by need have remained dis-

connected.1 Instead, for example, the control aspect of the storeless
operational account has most recently been sought to emulate this
storage effect using delimited continuations [28] or more generally
a computational monad [19].

So what else has happened instead? Sestoft [43] and Maraist et
al. [34] have continued to investigate store-based natural seman-
tics for lazy evaluation, following Launchbury’s [32]. Recently,
Nakata and Hasegawa have shown the equivalence of variants of
the calculus and Launchbury’s natural semantics [36] and Chang
and Felleisen have designed a new calculus with one axiom and
shown it to correspond with Launchbury’s natural semantics [14].
Other lazy abstract machines have been designed as well [26, 28].
All of these results provide extensional equivalence between the
semantics, which yield equivalent values on identical terminating
terms. Also, some of the machines are ostensibly derived but none
of the derivation methods seem to have been subsequently reused.

Does this mean that the long-emerged investigation of lazy eval-
uation is still an ever-expanding and disconnected exploratory pro-
cess? Actually, no. Ager et al. [3] have inter-derived a store-based
call-by-need evaluator and a lazy version of the Krivine machine
with a store (Figure 2, page 3), using the functional correspon-
dence between evaluators and abstract machines summarized in
Appendix A.2 and originally due to Reynolds [2, 41]. Biernacka
and Danvy [13, Section 9] have inter-derived a reduction semantics
of a λ-calculus with explicit substitutions and a store, λρ̂l, and the
same lazy version of the Krivine machine with a store (Figure 2),
using the syntactic correspondence between reduction semantics
and abstract machines summarized in Appendix A.1. Pirog and
Biernacki [39] have inter-derived Launchbury and Sestoft’s natural
semantics for lazy evaluation and Peyton Jones’s Spineless Tagless
G-Machine, using Reynolds’s functional correspondence and for-
malizing this correspondence in Coq. We have inter-derived combi-
natory graph reduction over term graphs à la Barendregt et al. [10]
and Turner’s graph-reduction machine [45], including the Y com-
binator [21]. And Ariola, Downen, Herbelin, Nakata and Saurin
have put this inter-derivational unity of semantic artifacts to use for
call-by-need sequent calculi [4].

So what is the contribution of the present article? We report a
similar major unified progress in the investigation of lazy evalua-
tion in the λ-calculus. Macroscopically, as depicted in Figure 13,
page 10, we present a connection between the two major accounts
of lazy evaluation—store-based and storeless—across the three ma-
jor styles of operational semantics: reduction semantics, abstract
machines and natural semantics. And microscopically, as defined
in Section 4, our connection is based on a lock-step equivalence
between the small-step semantics.

In what does our synthetic account differ from others? Our ac-
count is dual to Hardin, Maranget and Pagano’s [29], who seek in-
variant structures in existing abstract machines using a calculus of
explicit substitutions, and to Douence and Fradet’s [23], who seek
common structures in existing abstract machines to establish a tax-
onomy. Indeed we end with abstract machines as semantic artifacts
that are in the common range of the syntactic correspondence (Ap-
pendix A.1) and of the functional correspondence (Appendix A.2).
We also illustrate how tuning one semantics mechanically gives rise
to another, e.g., Launchbury’s natural semantics and Sestoft’s ab-
stract machine.

Keeping in mind the answers to the series of questions above,
the rest of this article is organized as follows:2 Section 2 first con-

1 Indeed, the only known property of Ariola et al.’s call-by-need λ-calculus
is its completeness with respect to the standard reduction of the λ-calculus
(i.e., call by name).
2 In the wake of the previous 700 papers about lazy evaluation, it is some-
thing of a challenge to write an original introduction for yet another article

trasts call by name and call by need. Section 3 presents our first
starting point: a store-based lazy version of the Krivine abstract
machine. Section 4 presents our notion of lock-step equivalence.
Section 5 presents our second starting point: a reduction seman-
tics for call-by-need reduction. Section 6 then presents abstract ma-
chines for call-by-need evaluation, and Section 7 natural semantics
for call-by-need evaluation. Figure 1 depicts our overall story.

Prerequisites and notations: We expect the reader to be ac-
quainted with the formats of a (small-step) reduction semantics,
an abstract machine, and a (big-step) natural semantics, as can
be gathered, e.g., in Felleisen et al.’s recent textbook [25] and in
Danvy’s lecture notes at AFP 2008 [17]. We use x and y to range
over names and use subscripts as well as primes to distinguish
meta-variables in a syntactic category, e.g., x0, x1, x′, x′′. We as-
sume all initial terms to be closed λ-terms defined by the usual
BNF of the pure λ-calculus:

Λ 3 t ::= x | λx.t | t t
and let fv(t) denote the set of free variables in t. When unambigu-
ous, we allow meta-variables from different semantic specifications
to overlap. When ambiguous, we superscript the meta-variables
with the notion of reduction of the particular semantics, e.g., tR.

2. Call by need vs. call by name
Lazy evaluation is an optimization of the standard reduction of λ-
terms and as such we expect any two strategies for lazy evaluation
to assign identical meanings to identical λ-terms. However, the op-
erational behaviors specified by the two strategies can be readily
observed on even small programs, such as this fully applied ex-
pression using Church numbers:

n︷ ︸︸ ︷
cm (cm (· · · (cm id id) · · ·) id) id

where cn = λs.λz.

n︷ ︸︸ ︷
s (s · · · (s z) · · ·). Under call by name, the

above expression takes an exponential number of steps to reduce,
whereas under call by need, the number of steps is polynomial.

In this regard, call-by-need evaluation is a particular optimiza-
tion and it is this optimization we want to characterize (so we are
not interested in optimal reduction here [8, 33]). As language users
and implementors alike, we are interested in reasoning about the
time and space complexity of programs under call by need. In other
words, we are concerned with the operational behavior of its spec-
ification as opposed to the equational theory it enables, which is
already aptly covered by call by name. We therefore wish to pre-
cisely relate the operational behavior specified by the call-by-need
λ-calculus to the established method of implementing the call-by-
need evaluation strategy. To this end, we first argue for what is a
canonical specification of the call-by-need reduction strategy (Sec-
tion 3). We then define a notion of lock-step equivalence by which
we can prove the operational behavior of reduction strategies equiv-
alent up to a fine-grained notion of steps (Section 4).

3. Store-based call-by-need evaluation and
reduction

The call-by-need evaluation strategy originates with Wadsworth [46]
and was subsequently and independently used for programming

about lazy evaluation. In the 701st paper [19], Danvy et al. started with an
unashamedly apocryphal anecdote illustrating computation on demand and
memoization of intermediate results. In the present paper, and as no doubt
spotted by the zealous reader already, we wrote the present introduction in
call-by-need style with a series of Socratic questions concluded with a re-
quest to keep their answers in mind.

Ariola et al.’s
call-by-need
λlet-calculus

(Figure 4)
syntactic

correspondence

oo lock-step

equivalence
//

revised
call-by-need
λlet-calculus

(Figure 5)

Section 6.1

��

oo lock-step

equivalence
//

��

decoupled
call-by-need
λ-calculus
(Figure 6)

Section 6.2

��

oo lock-step

equivalence
//

��

store-based
call-by-need
λ-calculus
(Figure 7)

Section 6.3

����

functional
correspondence

storeless
abstract machine

(Figure 8)
oo corollary // decoupled

abstract machine
(Figure 9)

Section 7.1
����

oo corollary // lazy Krivine
abstract machine

(Figure 10)

Section 7.2

�� ��
decoupled

natural semantics
(Figure 11)

oo corollary // store-based
natural semantics

(Figure 12)
Small-step to big-step accounts of call by need are shown from top to bottom.
Storeless to store-based accounts of call by need are shown from left to right.

Figure 1: Local picture: semantics for call-by-need evaluation

Syntax:
Term 3 t ::= x | λx.t | t t
Value 3 v ::= λx.t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]

Transition rules:
〈λx.t, E, σ〉term →S 〈E, λx.t, σ〉cont
〈t0 t1, E, σ〉term →S 〈t0, E[� t1], σ〉term
〈x, E, σ〉term →S 〈t, E[x := �], σ〉term

where t = σ(x)
and t 6∈ Value

〈x, E, σ〉term →S 〈E, v, σ〉cont
where v = σ(x)

〈�, v, σ〉cont →S 〈v, σ〉ans
〈E[� t1], λx.t, σ〉cont →S 〈t[x ′/x], E, σ[x ′= t1]〉term

where x ′6∈ dom(σ)
〈E[x := �], v, σ〉cont →S 〈E, v, σ[x = v]〉cont

Execution starts in a term-configuration with an empty context and
an empty store, and proceeds through successive transitions. In the
second cont-transition, an actual parameter is delayed in a thunk.
In the second-to-last term-transition, a thunk is forced. In the last
cont-transition, a thunk has completed and its result is memoized.

Figure 2: Lazy version of the Krivine abstract machine

languages by Henderson and Morris [30] and by Friedman and
Wise [27]. All of these specifications have one idea in common: to
delay the evaluation of actual parameters with thunks allocated in
a global store, and to force this evaluation on demand and mem-
oize the resulting value in the thunk. In this section, we specify
a canonical machine for call-by-need evaluation of pure λ-terms
which reflects this implementational practice. We then inter-derive
the corresponding notion of one-step reduction.

3.1 A machine for call-by-need evaluation
Our starting point is the properly tail-recursive and lazy variant
of the Krivine machine displayed in Figure 2 [16]. This machine
features memo-thunks in a global store. In words: Terms are pure λ-
terms. Values are λ-abstractions. Evaluation contexts consist of the
empty context, an application context, and an update context. The
machine uses two transition functions: term dispatching on terms
and cont dispatching on evaluation contexts. Here demand-driven

Syntax:

Term 3 t ::= x | λx.t | t t | x := t
Value 3 v ::= λx.t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]
Redex 3 r ::= v t | x := v | x

Contraction rules:
(I) 〈E[(λx.t) t1], σ〉 → 〈E[t[x ′/x]], σ[x ′= t1]〉

where x ′6∈ dom(σ)
(V) 〈E[x := v], σ〉 → 〈E[v], σ[x = v]〉
(L) 〈E[x], σ〉 → 〈E[x := t], σ〉

where t = σ(x)
and t 6∈ Value

(Ṽ) 〈E[x], σ〉 → 〈E[v], σ〉
where v = σ(x)

S = (I) ∪ (V) ∪ (L) ∪ (Ṽ)

Standard one-step reduction:

〈t, σ〉 7→S 〈t′, σ′〉 iff


decomposition: t = E[r]

(〈E[r], σ〉, 〈E[t′′], σ′〉) ∈ S
recomposition: t′ = E[t′′]

Figure 3: The reduction semantics corresponding to Figure 2

computation is implemented by the third term-transition and the
second cont-transition, while memoization is implemented by the
last cont-transition.

This machine represents a canonical implementation of the call-
by-need evaluation strategy using actual substitutions. The update
contexts represent “update markers” in the sense of Fairbairn and
Wray’s Three Instruction Machine [24]. Furthermore, this machine
can be inter-derived with traditional store-based call-by-need eval-
uators, as shown by Ager et al. [3].

Definition 1 (reduction-free evaluation). A term t ∈ Λ evaluates
to a value v iff

〈t, �, ε〉term →∗S 〈v, σ〉ans

holds, where→∗S is the transitive closure of→S . (See Figure 2.)

3.2 A semantics for call-by-need reduction
Using Biernacka and Danvy’s syntactic correspondence between
reduction semantics and abstract machines [13], we can inter-derive
the lazy Krivine machine of Section 3.1 with a reduction-based
counterpart. This reduction-based semantics takes the form of a re-
duction semantics and is displayed in Figure 3. Compared to the
machine, an update context is given a term representation in the
form of an update expression. The grammar of potential redexes
gives rise to the four contraction rules. Here, demand-driven com-
putation is captured by Rule (I) and Rule (L), and memoization is
captured by Rule (V).

This reduction semantics is the closure-free counterpart of
λρ̂l [13, Section 9].

Definition 2 (reduction-based evaluation). A term t ∈ Λ reduces
to a value v iff 〈t, ε〉 7→∗S 〈v, σ〉 holds, where 7→∗S is the reflexive-
transitive closure of 7→S . (See Figure 3.)

3.3 From evaluation to reduction
In summary, we have defined a reduction semantics for call-by-
need reduction. Through the syntactic correspondence, this seman-
tics corresponds to a store-based lazy version of the Krivine ab-
stract machine which is inter-derivable with a traditional store-
based lazy evaluator. Therefore, these semantics specify the canon-
ical evaluation strategy of call by need.

Proposition 3 (full correctness). For any term t ∈ Λ,

〈t, �, ε〉term →∗S 〈v1, σ1〉ans ⇐⇒ 〈t, ε〉 7→∗S 〈v2, σ2〉
where v1 =α v2 and σ1 =α σ2.

Proof. Corollary of the full correctness of refocusing [20, 44].

4. Lock-step equivalence
Our notion of lock-step equivalence is based on Milner’s weak
bisimulation or observable equivalence of processes [35, Chap-
ter 5]. In contrast to bisimulation where one equates objects within
the same system, we are here interested in relating objects between
separately defined systems. Also, we are not concerned with label-
ing.

We understand a process to be the steps defined by a transition
system, in our case the standard reduction sequence as defined
by the standard one-step reduction of a reduction semantics. Two
processes are lock-step equivalent if any step taken by one can be
mirrored by the other modulo the steps considered internal to the
other process:

Definition 4 (Lock-step equivalence). Let →α be a transition
system with internal transitions →α̂ and let →β be a transition
system with internal transitions→β̂ . A binary relation R between
the states of→α and→β is a lock-step relation if for all aR b:

a→α a
′ ⇒ ∃b′ : b→∗

β̂
→β→∗β̂ b

′ ∧ a′R b′

and
b→β b

′ ⇒ ∃a′ : a→∗α̂→α→∗α̂ a′ ∧ a′R b′

Two states a and b are lock-step equivalent, a α≈β b, iff there exists
a lock-step relation R such that aR b. If both sets of internal
transitions are empty, then the lock-step relation is akin to a strong
bisimulation.

5. Reduction semantics for call-by-need reduction
This section presents four reduction semantics for call-by-need
evaluation together with their standard reduction. The first one is
the λlet-calculus and is due to Ariola, Felleisen, Maraist, Odersky,

Syntax:

Term 3 t ::= x | λx.t | t t | let x = t in t
Value 3 v ::= λx.t

Answer 3 a ::= λx.t | let x = t in a
Context 3 E ::= � | E t | let x = t in E | let x = E in E[x]
Redex 3 r ::= a t | let x = a in E[x]

Contraction rules:
(I) (λx.t) t1→ let x = t1 in t
(C) (let x = t1 in a) t2→ let x = t1 in a t2
(V) let x = v in E[x]→ let x = v in E[v]
(A) let x = let y = t1

in a
in E[x]

→ let y = t1
in let x = a

in E[x]

R = (I) ∪ (C) ∪ (V) ∪ (A)

Standard one-step reduction:

t 7→R t′ iff


decomposition: t = E[r]

contraction: (r, t′′) ∈ R
recomposition: t′ = E[t′′]

Figure 4: The call-by-need λlet-calculus

and Wadler (Section 5.1). We then calculate a revised semantics
where (1) we hereditarily contract potential redexes, and (2) we
make explicit when denotables are needed from their point of use
to their point of declaration (Section 5.2). This latter distinction
leads us to introducing a new term to represent this def-use chain: a
strict let expression. A more uniform distinction between strict and
non-strict let expressions leads us to ‘decoupling’ the reduction se-
mantics into one with two contexts (Section 5.3). Interpreting one
of these two contexts as a global store yields the reduction seman-
tics of Figure 3 (see Section 5.4) which specifies the canonical eval-
uation strategy of call by need: Ariola et al.’s reduction semantics
therefore also specifies the canonical evaluation strategy of call by
need.

5.1 Storeless reduction semantics
Our starting point is the standard call-by-need reduction for the
λlet-calculus that is common to Ariola, Felleisen, Maraist, Oder-
sky, and Wadler’s articles [5, 6, 34], renaming non-terminals for
notational uniformity. This calculus and its standard reduction are
displayed in Figure 4. In words: Terms are pure λ-terms with let ex-
pressions declaring denotables. Values are λ-abstractions. Answers
are let expressions nested around a value. Evaluation contexts are
terms with a single hole and are constructed according to the stan-
dard call-by-need reduction strategy. Redexes come in two forms:
the application of an answer, or the binding of an answer to a deno-
table whose value is needed. Each gives rise to a pair of contraction
rules:

• Rules (I) and (C) arise from the application of an answer.
(I) introduces a let binding, while (C) allows let bindings to
commute with applications.
• Rules (V) and (A) arise from the binding of an answer to a

variable whose value is needed. (V) hygienically substitutes a
definiens (here: a value) for a variable occurrence, while (A)
re-associates let bindings.

The standard one-step reduction is the compatible closure over the
contraction rules with respect to the evaluation contexts.

Definition 5 (reduction-based evaluation [6]). A term t ∈ Λ re-
duces to an answer a iff t 7→∗R a holds, where 7→∗R is the reflexive-
transitive closure of 7→R. (See Figure 4.)

5.2 Revised storeless reduction semantics
In this section, we develop a revised version of the storeless reduc-
tion semantics with contraction rules that more closely match the
rules of the store-based reduction semantics in Section 3.2.

Hereditary contraction: Examining the contraction rules of Fig-
ure 4, we see that a contractum of Rule (C) contains a redex of
the form a t. This redex can thus be further contracted by either
Rule (C) or Rule (I). Likewise, a contractum of Rule (A) con-
tains a redex of the form let x = a in E[x]. This redex can thus be
further contracted by either Rule (A) or Rule (V). More precisely,
by straightforward induction on the following definition of answer
contexts,

Ans Ctx 3 A ::= � | let x = t in A

we relate the following terms under the reflexive transitive closure
of the standard one-step reduction relation:

A[λx.t] t1 7→∗R A[let x = t1 in t]
let x = A[v] in E[x] 7→∗R A[let x = v in E[v]]

Strict let expressions: The reduction semantics of Section 5.1
cleverly specifies what it means for a denotable to be “needed.”
Specifically, a denotable x is needed in a term t if t can be
uniquely decomposed into E[x]. Therefore, the let expression
“let x = t1 in t” can be in one of two states: if t = E[x], we
say that the let is strict, forcing evaluation of the definiens; and if
t 6= E[x], we say that the let is non-strict, postponing the evaluation
of the definiens.

Let us make this property syntactically explicit in terms, using
a strict let expression “let x := t in E[x]” where x is needed in the
bodyE[x]. In contrast, the original let expression “let x= t in t” is
a non-strict let expression. Strict let expressions are then introduced
and eliminated with the following rules:

let x = t1 in E[x]→ let x := t1 in E[x]
let x := v in E[x]→ let x = v in E[v]

In the case where t1 is a value, this introduction rule and this elimi-
nation rule are applied consecutively in the reduction sequence. To
cater for that case, we fuse these two rules into a new one, (Ṽ).

Applying the two changes (hereditary contraction and introduc-
tion of strict let expressions) to the reduction semantics of Sec-
tion 5.1 we obtain the semantics displayed in Figure 5.

Definition 6 (reduction-based evaluation). A term t ∈ Λ reduces
to a value v in an answer context A iff t 7→∗C A[v] holds, where
7→∗C is the reflexive-transitive closure of 7→C . (See Figure 5.)

Proposition 7 (full correctness). For any closed t ∈ Λ, tR≈C t.

Proof. There exists a lock-step relation over R and C, where (C),
(A) and (L) are internal transitions. (See Figure 14.)

5.3 Decoupled reduction semantics
The reduction semantics of Section 5.1 distinguishes strict and non-
strict forms only in its specification of evaluation contexts. In Sec-
tion 5.2, strictness is made explicit in terms, yet strict and non-strict
forms remain coupled during contraction. Examining the contrac-
tion rules of Figure 5, we see that strict let expressions are intro-
duced to guide computation while non-strict let expressions are in-
troduced to store intermediate results. In this section, we decouple
strict and non-strict contexts, thereby separating the concerns of
computation from the concerns of mere storage of intermediate re-
sults. The resulting semantics is displayed in Figure 6. The defining

Syntax:

Term 3 t ::= x | λx.t | t t | let x = t in t | let x := t in E[x]
Value 3 v ::= λx.t

Ans Ctx 3 A ::= � | let x = t in A
Context 3 E ::= � | E t | let x = t in E | let x := E in E[x]
Redex 3 r ::= A[v] t | let x := A[v] in E[x] | let x = t in E[x]

Contraction rules:
(I) A[λx.t] t1→ A[let x = t1 in t]
(V) let x := A[v] in E[x]→ A[let x = v in E[v]]
(L) let x = t in E[x]→ let x := t in E[x]

where t 6∈ Value

(Ṽ) let x = v in E[x]→ let x = v in E[v]

C = (I) ∪ (V) ∪ (L) ∪ (Ṽ)

Standard one-step reduction:

t 7→C t′ iff


decomposition: t = E[r]

contraction: (r, t′′) ∈ C
recomposition: t′ = E[t′′]

Figure 5: The revised call-by-need λlet-calculus

Syntax:

Term 3 t ::= x | λx.t | t t | let x := t in A
Value 3 v ::= λx.t

Non-strict Context 3 A ::= � | let x = t in A
Strict Context 3 E ::= � | E t | let x := E in A

Redex 3 r ::= v t | let x := v in A | x
Contraction rules:
(I) 〈E[(λx.t) t1], A〉 → 〈E[t], A[let x = t1 in �]〉
(V) 〈E[let x := v in A1], A〉 → 〈E[v], A[let x = v in A1]〉
(L) 〈E[x], A〉 → 〈E[let x := t in A2], A1〉

where A = A1[let x = t in A2]
and t 6∈ Value

(Ṽ) 〈E[x], A〉 → 〈E[v], A〉
where A = A1[let x = v in A2]

D = (I) ∪ (V) ∪ (L) ∪ (Ṽ)

Standard one-step reduction:

〈t, A〉 7→D 〈t′, A′〉 iff


decomposition: t = E[r]

(〈E[r], A〉, 〈E[t′′], A′〉) ∈ D
recomposition: t′ = E[t′′]

Figure 6: The decoupled call-by-need λ-calculus

difference is that non-strict let expressions (in the form of non-strict
contexts) are no longer interleaved in the terms. Therefore:

• Terms no longer include non-strict let expressions and strict let
expressions delimit just the non-strict context.
• Strict contexts are terms with a hole in strict position: the

operand of an application, or the term bound by a strict let
expression.
• Non-strict contexts are nested non-strict let expressions.
• Rules (I) and (V) directly place non-strict let bindings in the

non-strict context.

Syntax:

Term 3 t ::= x | λx.t | t t | x := t
Value 3 v ::= λx.t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]
Redex 3 r ::= v t | x := v | x

Contraction rules:
(I) 〈E[(λx.t) t1], σ〉 → 〈E[t], σ[x = t1]〉
(V) 〈E[x := v], σ〉 → 〈E[v], σ[x = v]〉
(L) 〈E[x], σ〉 → 〈E[x := t], σ〉

where t = σ(x)
and t 6∈ Value

(Ṽ) 〈E[x], σ〉 → 〈E[v], σ〉
where v = σ(x)

S = (I) ∪ (V) ∪ (L) ∪ (Ṽ)

Standard one-step reduction:

〈t, σ〉 7→S 〈t′, σ′〉 iff


decomposition: t = E[r]

(〈E[r], σ〉, 〈E[t′′], σ′〉) ∈ S
recomposition: t′ = E[t′′]

Figure 7: The store-based call-by-need λ-calculus

• Rules (L) and (Ṽ) directly look up denotables in the non-strict
context.

The syntax of a strict let expression now consists of a non-strict
context. This context arises from Rule (L) where the name x is
needed and has a binding to t in the non-strict context A. This
context is split in two: A1 contains bindings that are lexically
visible to t and becomes the new non-strict context, thus making
the bindings available during evaluation of t; while A2 contains
bindings of names that are not lexically visible to t and is stored in
the strict let expression and subsequently restored once evaluation
of t completes in Rule (V).

The standard one-step reduction is now defined over a term and
a non-strict context:

Definition 8 (reduction-based evaluation). A term t ∈ Λ reduces
to a value v and a non-strict contextA iff 〈t, �〉 7→∗D 〈v, A〉 holds,
where 7→∗D is the reflexive-transitive closure of 7→D . (See Figure 6.)

Proposition 9 (full correctness). For any closed t ∈ Λ,

t C≈D 〈t, �〉

Proof. There exists a lock-step relation over C and D, with no
internal transitions.
(See Figure 15.)

5.4 Store-based reduction semantics
The reduction semantics of Section 5.3 distinguishes between strict
and non-strict contexts—strict contexts for guiding computation
and non-strict contexts for storing intermediate results. In this sec-
tion, we accentuate this distinction by interpreting strict contexts
as evaluation contexts and by representing non-strict contexts—
which, by hygiene, all declare distinct denotables—with a global
store. The result is a syntactic theory of the traditional implementa-
tion technique for lazy evaluation, the one using memo-thunks in a
global store. This semantics is displayed in Figure 7. The defining
difference is that the global store is never delimited. Therefore:

• Undelimiting update expressions (contexts) replace the delimit-
ing strict let expressions (contexts) in the decoupled semantics.

The standard one-step reduction is defined over a term and a store:

Definition 10 (reduction-based evaluation). A term t ∈ Λ reduces
to a value v with a store σ iff 〈t, ε〉 7→∗S 〈v, σ〉 holds, where 7→∗S
is the reflexive-transitive closure of 7→S . (See Figure 7.)

Proposition 11 (full correctness). For any closed t ∈ Λ,

〈t, �〉D≈S 〈t, ε〉

Proof. There exists a lock-step relation over D and S, with no
internal transitions.
(See Figure 16.)

5.5 Summary and conclusions
We have presented four lock-step equivalent reduction semantics
for call by need:

Corollary 12 (full correctness). For any closed t ∈ Λ,

tR≈C t C≈D 〈t, �〉D≈S 〈t, ε〉
Each of these reduction semantics captures a descriptive aspect of
call by need: the first one, which is due to Ariola et al., is storeless
and the fourth one is store-based and accounts for the traditional
implementation technique of using memo-thunks: Figure 7 is the
implicitly hygienic version of Figure 3, which syntactically corre-
sponds to the lazy Krivine machine of Figure 2.

6. Abstract machines for call-by-need evaluation
In this section, we derive abstract machines from each of the reduc-
tion semantics presented in Sections 5.2, 5.3, and 5.4. To this end,
we use the syntactic correspondence developed by Biernacka and
Danvy [13]. The method consists of a series of program transforma-
tions between a reduction-based evaluation function, as typically
specified by a reduction semantics, and a reduction-free evaluation
function, as typically specified by an abstract machine (see Ap-
pendix A.1). We do not display the abstract machine corresponding
to the reduction semantics presented in Section 5.1 (Ariola et al.’s)
because it has already been derived by Danvy et al. [19, Figure 4].

Following common practice, the reduction semantics of Sec-
tion 5 implicitly assume hygiene in the contraction rules. However,
when specifying an abstract machine as the basis for an implemen-
tation, the method of ensuring hygiene should be explicit. Mirror-
ing implementation practice, we thread a stream of fresh names
with the reduction sequence:

X ∈ FreshNames = νX.Name×X.
Each contraction rule therefore inherits and synthesizes this stream.

Following Danvy et al.’s hygiene strategy [19, Section 4.2], we
choose to rename λ-bound names when introducing let expres-
sions, thereby enforcing that all let-bound names are distinct. To
this end, we modify the (I)-rule of each reduction semantics:

(I)C 〈E[(λx.t) t1], (x ′, X)〉 → 〈E[let x ′= t1 in t[x ′/x]], X〉
(I)D 〈E[(λx.t) t1], A, (x ′, X)〉 → 〈E[t[x ′/x]], A[let x ′= t1 in �], X〉
(I)S 〈E[(λx.t) t1], σ, (x ′, X)〉 → 〈E[t[x ′/x]], σ[x ′= t1], X〉

For each of our reduction semantics, the syntactic correspondence
mechanically yields a reduction-free abstract machine where inter-
mediate steps in the reduction sequence have been deforested away.

6.1 Storeless abstract machine
Figure 8 displays the abstract machine derived from the storeless
reduction semantics of Section 5.2. It uses the same definition
of terms, values, answer contexts and evaluation contexts. (See
Figure 5.)

〈λx.t, E〉term
X;X−→C 〈E, λx.t〉cont

〈t0 t1, E〉term
X;X−→C 〈t0, E[� t1]〉term

〈let x = t1 in t, E〉term
X;X−→C 〈t, E[let x = t1 in �]〉term

〈let x := t in E1[x], E〉term
X;X−→C 〈t, E[let x := � in E1[x]]〉term

〈x, E〉term
X;X−→C 〈t, E1[let x := � in E2[x]]〉term where E = E1[let x = t in E2] and t 6∈ Value

〈x, E〉term
X;X−→C 〈E, v〉cont where E = E1[let x = v in E2]

〈�, A[v]〉cont
X;X−→C 〈A[v]〉ans

〈E[� t1], A[λx.t]〉cont
(x′, X);X−→C 〈t[x ′/x], E[A[let x ′= t1 in �]]〉term

〈E[let x = t1 in �], A[v]〉cont
X;X−→C 〈E, let x = t1 in A[v]〉cont

〈E[let x := � in E1[x]], A[v]〉cont
X;X−→C 〈E[A[let x = v in E1]], v〉cont

Execution starts in a term-configuration with an empty context and proceeds through successive transitions. The stream of fresh names
X is threaded through. In the second cont-transition, an actual parameter is delayed in a non-strict let expression. In the second-to-last
term-transition, a non-strict let expression is replaced by a strict let expression, thereby forcing the evaluation of its definiens. In the last
cont-transition, the evaluation of the definiens has completed and the strict let expression is replaced by a non-strict let expression declaring
the resulting value.

Figure 8: Storeless machine for call by need

We note that the abstract machine of Figure 8 is essentially the
same as the abstract machines of Garcia et al. [28] and Danvy et
al. [19], which differ only with respect to their handling of hygiene.
This equivalence arises from two facts: (1) the hereditary compres-
sion in the revised semantics is superseded by transition compres-
sion of the abstract machine, and (2) even without introducing strict
let expressions, their context counterpart must still be represented
to guide evaluation in the abstract machine.

Definition 13 (reduction-free evaluation). A term t ∈ Λ evaluates
to a value in an answer context A[v] iff

〈t, �〉term
X;X′−→*
C 〈A[v]〉ans

holds, where→∗C is the transitive closure of→C . (See Figure 8.)

Notationally we use X;X′−→*
C to express that X is the input stream and

X′ is a suffix of X obtained after iterating→C .

NB. Assuming the initial term to be a pure λ-term (i.e., to con-
tain no let expressions), we can omit the third and fourth term-
transitions. Starting from a pure λ-term, the forms let x = t in t
and let x := t in E[x] are indeed never constructed in the course of
execution.

Proposition 14 (full correctness). For any term t ∈ Λ,

t 7→∗C A1[v1] ⇐⇒ 〈t, �〉term
X;X′−→*
C 〈A2[v2]〉ans

where v1 =α v2. (In fact, v1 = v2 if, in the reduction sequence, we
pick fresh names according to the stream of fresh names threaded
in the abstract machine.)

6.2 Decoupled abstract machine
Figure 9 displays the abstract machine derived from the decoupled
reduction semantics of Section 5.3. It uses the same definition of
terms, values, strict contexts and non-strict contexts. (See Figure 6.)

Definition 15 (reduction-free evaluation). A term t ∈ Λ evaluates
to a value v with a non-strict context A iff

〈t, �, �〉term
X;X′−→*
D 〈v, A〉ans

holds, where→∗D is the transitive closure of→D . (See Figure 9.)

As in Section 6.1, assuming the initial term to be a pure λ-term, we
can omit the third term-transition.

〈λx.t, E, A〉term
X;X−→D 〈E, λx.t, A〉cont

〈t0 t1, E, A〉term
X;X−→D 〈t0, E[� t1], A〉term

〈let x := t in A1, E, A〉term
X;X−→D 〈t, E[let x := � in A1], A〉term

〈x, E, A〉term
X;X−→D 〈t, E[let x := � in A2], A1〉term

where A = A1[let x = t in A2]
and t 6∈ Value

〈x, E, A〉term
X;X−→D 〈E, v, A〉cont

where A = A1[let x = v in A2]

〈�, v, A〉cont
X;X−→D 〈v, A〉ans

〈E[� t1], λx.t, A〉cont
(x′, X);X−→D 〈t[x ′/x], E, A[let x ′= t1 in �]〉term

〈E[let x := �
in A1[x]]

, v, A〉cont
X;X−→D 〈E, v, A[let x = v in A1]〉cont

Execution starts in a term-configuration with two empty contexts
and proceeds through successive transitions. The stream of fresh
names X is threaded through. In the second cont-transition, an ac-
tual parameter is delayed in a non-strict context. In the second-
to-last term-transition, a non-strict let expression is replaced by a
strict let expression, thereby forcing the evaluation of its definiens.
In the last cont-transition, the evaluation of the definiens has com-
pleted and the strict let expression is replaced back by a non-strict
let expression declaring the resulting value.

Figure 9: Decoupled machine for call by need

Proposition 16 (full correctness). For any term t ∈ Λ,

〈t, �〉 7→∗D 〈v1, A1〉 ⇐⇒ 〈t, �, �〉term
X;X′−→*
D 〈v2, A2〉ans

where v1 =α v2. (Again, v1 = v2 if, in the reduction sequence, we
pick fresh names according to the stream of fresh names threaded
in the abstract machine.)

6.3 Store-based abstract machine
Figure 10 displays the abstract machine derived from the store-
based reduction semantics of Section 5.4. It uses the same defini-
tion of terms, values, evaluation contexts and stores. (See Figure 7.)

〈λx.t, E, σ〉term
X;X−→S 〈E, λx.t, σ〉cont

〈t0 t1, E, σ〉term
X;X−→S 〈t0, E[� t1], σ〉term

〈x := t, E, σ〉term
X;X−→S 〈t, E[x := �], σ〉term

〈x, E, σ〉term
X;X−→S 〈t, E[x := �], σ〉term

where t = σ(x)
and t 6∈ Value

〈x, E, σ〉term
X;X−→S 〈E, v, σ〉cont

where v = σ(x)

〈�, v, σ〉cont
X;X−→S 〈v, σ〉ans

〈E[� t1], λx.t, σ〉cont
(x′, X);X−→S 〈t[x ′/x], E, σ[x ′= t1]〉term

〈E[x := �], v, σ〉cont
X;X−→S 〈E, v, σ[x = v]〉cont

Execution starts in a term-configuration with an empty context and
an empty store, and proceeds through successive transitions. The
store σ and the stream of fresh names X are threaded through. In the
second cont-transition, an actual parameter is delayed in a thunk.
In the second-to-last term-transition, a thunk is forced. In the last
cont-transition, a thunk has completed and its result is memoized.

Figure 10: Store-based machine for call by need

Definition 17 (reduction-free evaluation). A term t ∈ Λ evaluates
to a value v with a store σ iff

〈t, �, ε〉term
X;X′−→*
S 〈v, σ〉ans

holds, where→∗S is the transitive closure of→S . (See Figure 10.)

As in Sections 6.1 and 6.2, assuming the initial term to be a pure λ-
term, we can omit the third term-transition. The abstract machine
then coincides with the lazy Krivine machine in Figure 2.

Proposition 18 (full correctness). For any term t ∈ Λ,

〈t, ε〉 7→∗S 〈v1, σ1〉 ⇐⇒ 〈t, �, ε〉term
X;X′−→*
S 〈v2, σ2〉ans

where v1 =α v2. (One more time, v1 = v2 if, in the reduction
sequence, we pick fresh names according to the stream of fresh
names threaded in the abstract machine.)

6.4 Summary and conclusions
We have presented three equivalent abstract machines for call by
need:

Corollary 19 (full correctness). For any t ∈ Λ,

m
m

〈t, �〉term
X;X′−→*
C 〈A1[v1]〉ans

〈t, �, �〉term
X;X′−→*
D 〈v2, A2〉ans

〈t, �, ε〉term
X;X′−→*
S 〈v3, σ〉ans

where v1 = v2 = v3.

Each of these abstract machines captures a descriptive aspect of call
by need: the two first ones are storeless and the third one is store-
based and accounts for the traditional implementation technique of
using memo-thunks.

7. Natural semantics for call-by-need evaluation
In this section, we derive natural semantics from each of the ab-
stract machines derived in Sections 6.2 and 6.3. To this end, we
use the functional correspondence initiated by Reynolds [41] and
developed by Danvy et al. [2, 3, 17]. The method consists of a se-
ries of program transformations between an abstract machine and
a natural semantics, as typically specified by a recursive evaluation

〈λx.t, A〉 X⇓X
D 〈λx.t, A〉

〈t0, A〉 X⇓(x
′, X′)
D 〈λx.t, A′〉 〈t[x ′/x], A′[let x ′= t1 in �]〉 X′

⇓X′′

D 〈v, A′′〉
〈t0 t1, A〉 X⇓X′′

D 〈v, A′′〉

〈t, A〉 X⇓X′

D 〈v, A′〉
〈let x := t in A1[x], A〉 X⇓X′

D 〈v, A′[let x = v in A1]〉

A = A1[let x = t in A2] 〈t, A1〉 X⇓X′

D 〈v, A′1〉
〈x, A〉 X⇓X′

D 〈v, A′1[let x = v in A2]〉
where t 6∈ Value

A = A1[let x = v in A2]

〈x, A〉 X⇓X′

D 〈v, A1[let x = v in A2]〉

Figure 11: Decoupled natural semantics for call by need

function in direct style (see Appendix A.2). We do not display the
natural semantics corresponding to the storeless abstract machine
of Section 6.1 because it has already been derived by Danvy et
al. [19, Figure 8].

7.1 Decoupled natural semantics
Figure 11 displays the natural semantics derived from the abstract
machine of Section 6.2. It uses the same definition of terms, values
and non-strict contexts. (See Figure 6.)

We note that the natural semantics of Figure 11 is essen-
tially the same as Nakata and Hasegawa’s instrumented natural
semantics [36, Figure 7]. The most notable—and yet superficial—
difference is that Nakata and Hasegawa retain the entire structure
of the evaluation context as part of their structured heaps whereas
we only maintain the structure of the non-strict let expressions.

Definition 20 (evaluation). A term t ∈ Λ evaluates to a value
v with a non-strict context A iff 〈t, �〉 X⇓X′

D 〈v, A〉 holds. (See
Figure 11.)

NB. Assuming the initial term to be a pure λ-term (i.e., to contain
no let expressions), we can omit the third rule. Indeed, starting from
a pure λ-term, the form let x := t in A[x] can never be constructed
by a derivation.

Proposition 21 (full correctness). For any term t ∈ Λ,

〈t, �, �〉term
X;X′−→*
D 〈v, A〉ans ⇐⇒ 〈t, �〉 X⇓X′

D 〈v, A〉.

7.2 Store-based natural semantics
Figure 12 displays the natural semantics derived from the abstract
machine of Section 10. It uses the same definition of terms, values
and stores. (See Figure 7.)

Compared to Launchbury’s [32] and to Maraist et al.’s [34], the
natural semantics in Figure 11 explicitly handles name hygiene.
Compared to Sestoft’s [43], its handling of name hygiene reflects
implementational practice. Also, both Launchbury and Sestoft use
preprocessed terms, which prevents a direct syntactic comparison.

Definition 22 (evaluation). A term t ∈ Λ evaluates to a value v
with a store σ iff 〈t, ε〉 X⇓X′

S 〈v, σ〉 holds. (See Figure 12.)

As in Section 7.1, assuming the initial term to be a pure λ-term, we
can omit the third rule.

Proposition 23 (full correctness). For any term t ∈ Λ,

〈t, �, ε〉term
X;X′−→*
S 〈v, σ〉ans ⇐⇒ 〈t, ε〉 X⇓X′

S 〈v, σ〉.

〈λx.t, σ〉 X⇓X
S 〈λx.t, σ〉

〈t0, σ〉 X⇓(x
′, X′)
S 〈λx.t, σ′〉 〈t[x ′/x], σ′[x ′= t1]〉 X′

⇓X′′

S 〈v, σ′′〉
〈t0 t1, σ〉 X⇓X′′

S 〈v, σ′′〉

〈t, σ〉 X⇓X′

S 〈v, σ′〉
〈x := t, σ〉 X⇓X′

S 〈v, σ′[x = v]〉

t = σ(x) 〈t, σ〉 X⇓X′

S 〈v, σ′〉
〈x, σ〉 X⇓X′

S 〈v, σ′[x = v]〉
where t 6∈ Value

v = σ(x)

〈x, σ〉 X⇓X
S 〈v, σ〉

Figure 12: Store-based natural semantics for call by need

7.3 Summary and conclusions
We have presented two equivalent natural semantics for call-by-
need evaluation:

Corollary 24 (full correctness). For any term t ∈ Λ,

〈t, �〉 X⇓X′

D 〈v1, A〉 ⇐⇒ 〈t, ε〉 X⇓X′

S 〈v2, σ〉

where v1 =α v2.

Each of these natural semantics captures a descriptive aspect of call
by need: the first one is storeless and the second one is store-based
and accounts for the traditional implementation technique of using
memo-thunks.

Perhaps surprisingly, Launchbury’s natural semantics is to be
found between the decoupled and store-based natural semantics
presented here. The store-based semantics differs since it uses a
global store whereas Launchbury’s semantics does not. The decou-
pled semantics more closely connects with Launchbury’s seman-
tics. The fourth rule of Figure 11 mirrors Launchbury’s Variable
rule in that the binding of a denotable is not visible when reduc-
ing its definiens to a value. In addition, the decoupled semantics
extends this restriction to all of the bindings not lexically visible
according to the call-by-need λlet-calculus thereby exposing inher-
ent structure of store. The same can be said about Sestoft’s abstract
machine and the abstract machines presented in Section 6.2 and
6.3.

8. Extensions
In this section we briefly describe a few common extensions on the
λ-calculus. Adding these extensions and applying the equivalence
developed here is at the level of an exercise.

8.1 Alias optimization
The introduction of a let expression by Rule (I) corresponds to the
dynamic allocation of a delayed application frame. In the case of a
denotable, this frame can be eliminated akin to tail-call optimiza-
tion. We refine Rule (I) as:

〈E[(λx.t) x1], X〉 → 〈E[t[x1/x]], X〉
〈E[(λx.t) t1], (x ′, X)〉 → 〈E[let x ′= t1 in t[x ′/x]], X〉

where t1 6∈ Name

This optimization leads to a well-known space optimization of the
lazy abstract machine [12, 16, 26].

8.2 Generalized contraction
Often, a contraction of Rule (I) directly gives rise to a new (I)
redex. In this case, the series of applications can be done in one
step by generalizing Rule (I):

〈E[(λx1.· · ·λxn.t) t1 · · · tn], (x′1, (· · · , (x′n, X)))〉
(I)R →

〈E[let x′1 = t1, · · · , x′n = tn in t[x′1/x1, · · · , x′n/xn]], X〉
The resulting abstract machine is a lazy version of Krivine’s orig-
inal abstract machine [31]. (Indeed Krivine’s machine implements
generalized beta-reduction whereas what is known as the Krivine
machine [16] implements ordinary beta-reduction.)

8.3 Preprocessing
Alias optimization and generalized contraction can be further ex-
ploited if we split the reduction in two phases: a compile-time no-
tion of reductionR0:

〈E[t0 t1], (x, X)〉 → 〈E[let x = t1 in t0 x], X〉
where t1 6∈ Name

and a run-time notion of reduction R1 which specializes the rules
of R to the sub-grammar of R0-normal forms. Indeed, these pre-
processed terms are those used by Launchbury [32, Section 3.1]
and such preprocessing can be viewed as compiling to a term-graph
representation of terms [10, 21].

The global preprocessing of terms invalidates the assumption
used to ensure hygiene in Section 6. Since preprocessing occurs
under λ-binders, the introduced let-bound names might be dupli-
cated during reduction. Proper hygiene must therefore be ensured
by another method, e.g., using explicit substitutions or global re-
naming.

8.4 Cyclic terms
All the inter-derivations of Figure 1 scale to cyclic structures start-
ing with the mutually recursive letrec as defined by Ariola and
Felleisen [5]. We are in the process of proving the lock-step equiv-
alences extended for cyclic terms.

9. Conclusion and perspectives
We have presented the first operational account of lazy evaluation
that connects theory and practice, where ‘theory’ stands for a purely
syntactic account and ‘practice’ stands for the traditional imple-
mentation technique of imperative memo-thunks. This connection
reveals a genuine unity of purpose among theoreticians and imple-
mentors and opens the door to more interaction.

Our account is simple, structured and systematic (lock-step
equivalence, syntactic correspondence, and functional correspon-
dence). As depicted in Figure 13, it also connects independent
forays, discoveries, and inventions. It however does not readily ac-
count for issues pertaining to stackability [9, 15], duality [7], and
the factorization of an abstract machine into a byte-code compiler
and the corresponding virtual machine [1, 24]—a future work.

Ariola et al.’s
call-by-need
λ-calculus
[6, Fig. 5]

Garcia et al.
[28]

//

Nakata & Hasegawa
[36]

33

oo //
Ariola et al.’s
call-by-need
λlet-calculus

(Fig. 4, [6, Fig. 3])

Danvy et al.
[19]

&&

oo //
revised

call-by-need
λlet-calculus

(Fig. 5)

oo //

��

decoupled
call-by-need
λ-calculus

(Fig. 6)

oo //

��

store-based
call-by-need
λ-calculus

(Fig. 7)

Biernacka &
Danvy
[13]‡

�� ��
storeless

abstract machine
(Fig. 8)

Danvy et al.
[19]

��

oo // decoupled
abstract machine

(Fig. 9)

��

tt **
Sestoft’s

abstract machine
[43, Fig. 4]†

lazy Krivine
abstract machine

(Fig. 10)

��
storeless

natural semantics
[19, Fig. 8]

Nakata & Hasegawa’s
natural semantics

(Fig. 11, [36, Fig. 7]) kk 44

Launchbury’s
natural semantics

[32, Fig. 1]†

Sestoft
[43]

OO

store-based
natural semantics

(Fig. 12)

Ager et al.
[3]‡

OO

Small-step to big-step accounts of call by need are shown from top to bottom.
Storeless to store-based accounts of call by need are shown from left to right.
Full arrows depict existing connections. Dotted arrows depict connections made in the present article.
—— ——
† For preprocessed terms. ‡ For explicit substitutions / environments

Figure 13: Global picture: semantics for call-by-need evaluation

A. Outline of the correspondences
This appendix briefly summarizes the syntactic correspondence
and the functional correspondence used in the body of this arti-
cle to connect reduction semantics, abstract machines and natural
semantics. This summary is based on Danvy’s lecture notes at AFP
2008 [17].

A.1 The syntactic correspondence
The syntactic correspondence makes it possible to inter-derive the
representation of a reduction semantics and the representation of an
abstract machine as pure functional programs.

A reduction semantics is defined with a grammar of terms, a no-
tion of normal form, a collection of potential redexes, a partial con-
traction function (this function is partial because not all potential
redexes are actual ones: terms may be stuck), and a reduction strat-
egy that determines a grammar of reduction contexts. The reduction
strategy is implemented with a decomposition function that maps a
term in normal form to itself and a term not in normal form to a po-
tential redex and its reduction context. The recomposition function
is a left fold over a reduction context. One-step reduction of a term
which is not in normal form (1) locates the first potential redex in
this term according to the reduction strategy by decomposing this
term into a potential redex and its reduction context, (2) contracts
this redex if it is an actual one, and (3) recomposes the contractum
over the reduction context, yielding a reduct. Evaluation is defined
as the iteration of one-step reduction: this iteration enumerates the
reduction sequence; it is thus reduction-based. Evaluation can be-
come stuck, or yield a term in normal form, or diverge.

From reduction-based evaluation to reduction-free evaluation:
The goal of refocusing is to deforest, rather than enumerate, the
reducts of a reduction sequence. To this end, each consecutive call

to decompose over the result of a call to recompose is replaced
by one call to a refocus function that optimally navigates from a
reduction site to the next reduction site. The result is a small-step
abstract machine.

From small-step to big-step abstract machine: The small-step
abstract machine is transformed into a big-step abstract machine
using Ohori and Sasano’s lightweight fusion [18, 37].

Transition compression: The corridor transitions of the big-step
abstract machine are compressed.

A.2 The functional correspondence
The functional correspondence makes it possible to inter-derive the
representation of an evaluation function and the representation of
an abstract machine as pure functional programs.

Lambda-lifting: If the evaluation function contains scope-sensi-
tive local functions, their free variables become parameters, and the
resulting scope-insensitive functions float up to the top-level lexical
scope, yielding recursive equations. Lambda-dropping is the left
inverse of lambda-lifting.

Closure conversion: If the recursive equations are higher-order,
i.e., use functions as values, these functions are represented as
closures, i.e., pairs of terms and lexical environments. Closure
unconversion is the left inverse of closure conversion.

Given a compositional evaluation function implementing a de-
notational semantics, the result of lambda-lifting and closure con-
version is a typical functional program implementing a natural se-
mantics.

CPS transformation: All intermediate results are named, their
computation is sequentialized (which yields ‘A-normal forms’),

� C∅∅ �

E CX
Y E′

E[� t] CX
Y∪(fv(t)\X) E

′[� t]
where t ∈ Λ

E CX
Y E′

E[let x = t in �] C
X∪{x}
Y∪(fv(t)\X)

E′[let x = t in �]
where t ∈ Λ

E1 CX1
Y1

E′1 E2 CX2
Y2

E′2 where x 6∈ X2

E1[let x = � in E2[x]] CX1
Y1∪(Y2\X1∪{x})

E′1[let x := � in E′2[x]]

E CX
∅ E′

E[t] B E′[t]
where t ∈ Λ and fv(t) ⊆ X

Figure 14: A lock-step relation forR and C

� C∅
∅ 〈�, �〉

E CX
Y 〈E

′, A〉
E[� t] CX

Y∪(fv(t)\X)
〈E′[� t], A〉

where t ∈ Λ

E CX
Y 〈E

′, A〉

E[let x = t in�] C
X∪{x}
Y∪(fv(t)\X)

〈E′, A[let x = t in�]〉
where t ∈ Λ

E1 C
X1
Y1
〈E′

1, A1〉 E2 C
X2
Y2
〈E′

2, A2〉 where x 6∈ X2

E1[let x := � inE2[x]] C
X1
Y1∪(Y2\X1∪{x})

〈E′
1[E′

2[let x := � inA2]], A1〉

E CX
∅ 〈E′, A〉

E[t] B 〈E′[t], A〉where t ∈ Λ and fv(t) ⊆ X

Figure 15: A lock-step relation for C and D

and all functions are passed an extra function representing the rest
of the computation: the continuation. The result of the transforma-
tion is in the eponymous Continuation-Passing Style. The direct-
style transformation is the left inverse of the CPS transformation.

Defunctionalization: The function space of continuations is par-
titioned into a sum type. Each introduction of a continuation is
transformed into an injection into this sum type, and each elimi-
nation of a continuation is transformed into a call to a function dis-
patching over the sum type. Refunctionalization is the left inverse
of defunctionalization.

A.3 Synergy
The functional correspondence and the syntactic correspondence
synergize because of the concrete coincidence between the data
type of evaluation contexts (obtained by defunctionalizing the con-
tinuation of the big-step evaluation function) and the data type of
reduction contexts (obtained by defunctionalizing the continuation
of the small-step reduction function). The abstract connection be-
tween reduction order and evaluation order was first pointed out by
Plotkin [40].

B. Lock-step relations
The lock-step relations are listed in Figures 14, 15, and 16.

〈�, �〉 C∅∅ 〈�, ε〉

〈E, A〉 CX
Y 〈E′, σ〉

〈E[� t], A〉 CX
Y∪(fv(t)\X) 〈E′[� t], σ〉

where t ∈ Λ

〈E, A〉 CX
Y 〈E′, σ〉

〈E′, A[let x = t in �]〉 CX∪{x}
Y∪(fv(t)\X)

〈E′, σ[x = t]〉
where t ∈ Λ

and x 6∈ dom(σ)

〈E1, A1〉 C
X1
Y1

〈E′
1, σ1〉 〈E2, A2〉 C

X2
Y2

〈E′
2, σ2〉

where t ∈ Λ
and x 6∈ dom(σ1) ∪ dom(σ2)
and ∅ = dom(σ1) ∩ dom(σ2)

〈E1[E2[let x := � inA2]], A1〉 C
X1
Y1∪(Y2\X1∪{x})

〈E′
1[E′

2[x := �]], σ1[σ2[x= t]]〉

〈E, A〉 CX
∅ 〈E′, σ〉

〈E[t], A〉 B 〈E′[t], σ〉where t ∈ Λ and fv(t) ⊆ X

Figure 16: A lock-step relation for D and S

References
[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. From in-

terpreter to compiler and virtual machine: a functional derivation.
Technical Report BRICS RS-03-14, Department of Computer Science,
Aarhus University, Aarhus, Denmark, Mar. 2003.

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A func-
tional correspondence between evaluators and abstract machines. In
D. Miller, editor, Proceedings of the Fifth ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Program-
ming (PPDP’03), pages 8–19, Uppsala, Sweden, Aug. 2003. ACM
Press.

[3] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Infor-
mation Processing Letters, 90(5):223–232, 2004. Extended version
available as the research report BRICS RS-04-3.

[4] Z. M. Ariola, P. Downen, H. Herbelin, and A. Nakata, Keiko Saurin.
Classical call-by-need sequent calculi: The unity of semantic artifacts.
In T. Schrijvers and P. Thiemann, editors, Functional and Logic Pro-
gramming, 11th International Symposium, FLOPS 2012, number 7294
in Lecture Notes in Computer Science, pages 32–46, Kobe, Japan,
May 2012. Springer.

[5] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus.
Journal of Functional Programming, 7(3):265–301, 1997.

[6] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler.
A call-by-need lambda calculus. In P. Lee, editor, Proceedings of
the Twenty-Second Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 233–246, San Francisco, California, Jan.
1995. ACM Press.

[7] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and
duality. In L. Ong, editor, Typed Lambda Calculi and Applications,
International Conference, TLCA 2011, number 6690 in Lecture Notes
in Computer Science, pages 27–44, Novi Sad, Serbia, June 2011.
Springer.

[8] T. Balabonski. A unified approach to fully lazy sharing. In J. Field
and M. Hicks, editors, Proceedings of the Thirty-Ninth Annual ACM
Symposium on Principles of Programming Languages, pages 469–
480, Philadelphia, PA, USA, Jan. 2012. ACM Press.

[9] A. Banerjee and D. A. Schmidt. Stackability in the typed call-by-value
lambda calculus. Science of Computer Programming, 31(1):47–73,
1998.

[10] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kenn-
away, M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In J. de
Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE, Parallel
Architectures and Languages Europe, Volume II: Parallel Languages,
number 259 in Lecture Notes in Computer Science, pages 141–158,
Eindhoven, The Netherlands, June 1987. Springer-Verlag.

[11] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM. AI
Memo 239, Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, Feb. 1972. http:
//home.pipeline.com/~hbaker1/hakmem/.

[12] M. Biernacka and O. Danvy. A concrete framework for environment
machines. ACM Transactions on Computational Logic, 9(1):1–30,

2007. Article #6. Extended version available as the research report
BRICS RS-06-3.

[13] M. Biernacka and O. Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theoretical Computer
Science, 375(1-3):76–108, 2007. Extended version available as the
research report BRICS RS-06-18.

[14] S. Chang and M. Felleisen. The call-by-need lambda calculus, revis-
ited. In H. Seidl, editor, Programming Languages and Systems, 21st
European Symposium on Programming, ESOP 2012, Lecture Notes
in Computer Science, pages 128–147, Tallinn, Estonia, Mar. 2012.
Springer.

[15] S. Chang, D. V. Horn, and M. Felleisen. Evaluating call by need on the
control stack. In R. Page, Z. Horváth, and V. Zsók, editors, Trends in
Functional Programming, Volume 11, number 6546 in Lecture Notes
in Computer Science, pages 1–15, Norman, Oklahoma, May 2011.
Springer.

[16] P. Crégut. Strongly reducing variants of the Krivine abstract machine.
Higher-Order and Symbolic Computation, 20(3):209–230, 2007. A
preliminary version was presented at the 1990 ACM Conference on
Lisp and Functional Programming.

[17] O. Danvy. From reduction-based to reduction-free normalization.
In P. Koopman, R. Plasmeijer, and D. Swierstra, editors, Advanced
Functional Programming, Sixth International School, number 5382 in
Lecture Notes in Computer Science, pages 66–164, Nijmegen, The
Netherlands, May 2008. Springer.

[18] O. Danvy and K. Millikin. On the equivalence between small-step and
big-step abstract machines: a simple application of lightweight fusion.
Information Processing Letters, 106(3):100–109, 2008.

[19] O. Danvy, K. Millikin, J. Munk, and I. Zerny. On inter-deriving small-
step and big-step semantics: A case study for storeless call-by-need
evaluation. Theoretical Computer Science, 435:21–42, 2012. A pre-
liminary version was presented at the 10th International Symposium
on Functional and Logic Programming (FLOPS 2010).

[20] O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. Re-
search Report BRICS RS-04-26, Department of Computer Science,
Aarhus University, Aarhus, Denmark, Nov. 2004. A preliminary ver-
sion appeared in the informal proceedings of the Second Interna-
tional Workshop on Rule-Based Programming (RULE 2001), Elec-
tronic Notes in Theoretical Computer Science, Vol. 59.4.

[21] O. Danvy and I. Zerny. Three syntactic theories for combinatory graph
reduction. In M. Alpuente, editor, Logic Based Program Synthesis
and Transformation, 20th International Symposium, LOPSTR 2010,
revised selected papers, number 6564 in Lecture Notes in Computer
Science, pages 1–20, Hagenberg, Austria, July 2010. Springer. Invited
talk. Extended version to appear in ACM Transactions on Computa-
tional Logic.

[22] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for program-
ming language implementation. Future Generation Computer Sys-
tems, 16:739–751, 2000.

[23] R. Douence and P. Fradet. A systematic study of functional language
implementations. ACM Transactions on Programming Languages and
Systems, 20(2):344–387, 1998.

[24] J. Fairbairn and S. Wray. TIM: a simple, lazy abstract machine to
execute supercombinators. In G. Kahn, editor, Functional Program-
ming Languages and Computer Architecture, number 274 in Lecture
Notes in Computer Science, pages 34–45, Portland, Oregon, Sept.
1987. Springer-Verlag.

[25] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 2009.

[26] D. P. Friedman, A. Ghuloum, J. G. Siek, and L. Winebarger. Improving
the lazy Krivine machine. Higher-Order and Symbolic Computation,
20(3):271–293, 2007.

[27] D. P. Friedman and D. S. Wise. CONS should not evaluate its argu-
ments. In S. Michaelson and R. Milner, editors, Third International
Colloquium on Automata, Languages, and Programming, pages 257–
284. Edinburgh University Press, Edinburgh, Scotland, July 1976.

[28] R. Garcia, A. Lumsdaine, and A. Sabry. Lazy evaluation and delimited
control. Logical Methods in Computer Science, 6(3:1):1–39, July
2010. A preliminary version was presented at the Thirty-Sixth Annual
ACM Symposium on Principles of Programming Languages (POPL
2009).

[29] T. Hardin, L. Maranget, and B. Pagano. Functional runtime systems
within the lambda-sigma calculus. Journal of Functional Program-
ming, 8(2):131–172, 1998.

[30] P. Henderson and J. H. Morris Jr. A lazy evaluator. In S. L. Graham,
editor, Proceedings of the Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 95–103. ACM Press, Jan.
1976.

[31] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[32] J. Launchbury. A natural semantics for lazy evaluation. In S. L. Gra-
ham, editor, Proceedings of the Twentieth Annual ACM Symposium on
Principles of Programming Languages, pages 144–154, Charleston,
South Carolina, Jan. 1993. ACM Press.

[33] J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul.
Thèse d’état, Université de Paris VII, Paris, France, 1978.

[34] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. Journal of Functional Programming, 8(3):275–317, 1998.

[35] R. Milner. Communication and Concurrency. Prentice Hall Interna-
tional, 1989.

[36] K. Nakata and M. Hasegawa. Small-step and big-step semantics for
call-by-need. Journal of Functional Programming, 19(6):699–722,
2009.

[37] A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion.
In M. Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM
Symposium on Principles of Programming Languages, SIGPLAN No-
tices, Vol. 42, No. 1, pages 143–154, Nice, France, Jan. 2007. ACM
Press.

[38] S. L. Peyton Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless G-machine. Journal of Functional
Programming, 2(2):127–202, 1992.

[39] M. Pirog and D. Biernacki. A systematic derivation of the STG ma-
chine verified in Coq. In J. Gibbons, editor, Haskell ’10: Proceedings
of the 2010 ACM SIGPLAN Haskell Symposium, pages 25–36, Balti-
more, Maryland, Sept. 2010. ACM Press.

[40] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[41] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of 25th ACM National Conference,
pages 717–740, Boston, Massachusetts, 1972. Reprinted in Higher-
Order and Symbolic Computation 11(4):363-397, 1998, with a fore-
word [42].

[42] J. C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355–361, 1998.

[43] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional
Programming, 7(3):231–264, May 1997.

[44] F. Sieczkowski, M. Biernacka, and D. Biernacki. Automating deriva-
tions of abstract machines from reduction semantics: A generic for-
malization of refocusing in Coq. In J. Hage and M. T. Morazán,
editors, Implementation and Application of Functional Languages, –
22nd International Symposium, IFL 2010, number 6647 in Lecture
Notes in Computer Science, pages 72–88, Alphen aan den Rijn, The
Netherlands, Sept. 2010. Springer. Revised Selected Papers.

[45] D. A. Turner. A new implementation technique for applicative lan-
guages. Software—Practice and Experience, 9(1):31–49, 1979.

[46] C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus.
PhD thesis, Computing Laboratory, Oxford University, Oxford, UK,
1971.

