Vérification de programmes C concurrents
avec Cubicle : Enfoncer les barriéres

JFLA
9 janvier 2014

David Declerck

Université Paris-Sud

Travail réalisé conjointement avec :

» Sylvain Conchon, Alain Mebsout (Université Paris-Sud)
» Luc Maranget (INRIA)

Synchronization Barriers

Data structure used to synchronize the execution of a group of
threads at a program point.

POSIX libraries implement barriers defined as

» a data type barrier_t
» an initialization function barrier_init

» a synchronization function barrier wait

Demo.

Good synchronization

» There does not exist a thread before the barrier and another
thread after the barrier

Annotations in C source of these program points with

///exclusive
wait_barrier(...);
///exclusive

Contributions of this work

Proving safety of synchronization barriers

» written in C
» for any number of threads

» automatically by model checking

We assume sequential consistency :

> Interleaving semantics

» Preservation of operations order

Compiling (a fragment of) C to Cubicle

A limited fragment of C (basically, just what we need for the
implementation of our benchmarks)

» int and void data types

v

restricted usage of structures

v

pointers limited to passing by reference

v

loops, assignments, conditionals,

v

arithmetic and relational operations

Target language

» Transition systems with states described by global variables
(of type int, bool and enumerations) and infinite arrays
indexed by thread identifiers

» Transitions are encoded by logical formulas and they can be
parameterized by thread identifiers (existential quantification)

Ji. T[] =true ANX <100 A Vk. k # i = T[k| = false
ANX =X+ 1AT][i] = false
(here T" and X’ denote respectively the value of array T and

variable X after the execution of the transition)

We can only check safety properties characterized by bad states

(very simple) Memory Model

A set of global variables shared between threads, and for each
thread i

» a program counter PC[i] of type t, where
type t = Idle | End | L1 | L2 |

» a stack represented by a set of k global variables STACK_j [i]

Compilation schema: Example

x=x+ 1] ...

corresponds to the following instructions

LO : STACKO[i] ¢ x
L1 : STACK O[i] < STACK.O[i] + 1
L2 : x < STACK_O[i]

which are compiled as three transitions
Ji. PC[i] = LO A STACK_0'[1] = x APC'[i] = L1
Ji. PC[i] = L1 A STACK_0'[i] = STACKO[i] + 1 APC'[{] = L2
Ji. PC[i] = L2 A x’ = STACK_0[i]

Compiling Thread Counters

How to encode the arbitrary number of threads N 7

#define N

int cpt = I il Vi. cpt’[i] =1
N
cpt--; J Ji. cptli] =1 Acpt'[i] =0
[1][0]1]

if (cpt == 0) J0JOoJOJ]... |Vicptlil]=0

10

Demo.

11

Nodes | Inv. | Restarts | Time
sb_alt.c 598 180 53 11m27s
sb.c 414 156 34 5m21s
sb_nice.c 303 139 49 28m8s
sb_single.c 174 99 54 17m44s
sb_loop.c - - - TO

12

Optimizations

1. We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

» SMT solver more efficient on booleans

» Invariant generation of model checker is not good with integers

2. Elimination of spurious traces arising from crash failure model
present to handle universal quantifiers of thread counters’
encoding

» Reduce number of backtracking (restarts) in model checker

13

Benchmarks: typing optimization

with typing without typing
Inv. | Restarts | Time | Inv. | Restarts | Time
sb_alt.c 152 7 7.64s | 180 53 11m27s
sb.c 226 10 20.7s | 156 34 5m21s
sb_nice.c 106 9 11.6s | 139 49 28m8s
sb_single.c | 115 5 3.11s | 99 54 17m44s
sb_loop.c 1577 33 14m49 | - - TO

14

Benchmarks: crash failure model optimization

Refinement No refinement

Inv. | Restarts | Time | Inv. | Restarts | Time
sb_alt 37 1 2,17s | 152 7 7,64s
sb.c 64 1 3,99s | 226 10 20,7s
sb_nice.c 51 1 2,54s | 106 9 11,6s
sb_single.c 36 1 1,12s | 115 5 3,11s
sb_single us.c - 0 4,94s - 0 5,06s
sb_loop.c 275 1 59,8s | 1577 33 14m49s

15

v

Experiment with other types of synchronization barriers

v

Larger subset of C

v

C11 standard (semantic for concurrent programs)

v

Improve Cubicle’s invariants generation mechanism for
numerical candidates

16

Merci.

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0;
y = x5
z =5,

if (2) {x=x+1;}

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y = %5
z =y;

if (2) {x=x+1;}

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y =%
z =y; %, y and z have the same type

if (2) {x=x+1;}

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y =%
z =y; %, y and z have the same type

if (z) { x =x + 1; } =zisbool, and xis int

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y =%
z =y; %, y and z have the same type

if (z) { x =x + 1; } =zisbool, and xis int

The program is rejected

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;

y = 0;
if (y ==0) { x=0; }

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;
y = 0; y is int or bool
if (y ==0) { x=0; }

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;
y = 0; y is int or bool
if (y ==0) { x = 0; } yisint and xis int or bool

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;
y = 0; y is int or bool
if (y ==0) { x = 0; } yisint and xis int or bool

The program is well typed

x:int (for safety reasons)
y:int

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;
x =0 && 1;
if (x 1=y && y !'=z && x != z)

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;
x =0 && 1; X is bool
if (x 1=y && y !'=z && x != z)

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;
x =0 && 1;
if (x '=y & y !'=z && x !'= z)
X, y and z are bool, but only x is initialized

X is bool

18

Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;
x =0 && 1;
if (x '=y & y !'=z && x !'= z)
X, y and z are bool, but only x is initialized

X is bool

The program is rejected

18

Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C
Vi. X[i] = A (inital states)
t1: 34, 5.1 #jAX[i] =AAX[j]=AA X[i]| =B
to:3i. X[i]| =BA V). j#i = X[j]|#A AN X[i]=C

19

Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C
Vi. X[i] = A (inital states)
t1: 34, 5.1 #jAX[i] =AAX[j]=AA X[i]| =B
to:3i. X[i]| =BA V). j#i = X[j]|#A AN X[i]=C

3. i A
X[il=A A

X[jI=A

pre_t1(i, j)

pre_t2(i)

19

Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C
Vi. X[i] = A (inital states)
t1: 34, 5.1 #jAX[i] =AAX[j]=AA X[i]| =B
to:3i. X[i]| =BA V). j#i = X[j]|#A AN X[i]=C

3. i A
X[il=A A

X[jI=A

pre_t1(i, j)
the program could contain only one thread

3i. X[i]=8B

A
pre_t2(i)

19

Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C
Vi. X[i] = A (inital states)
t1: 34, 5.1 #jAX[i] =AAX[j]=AA X[i]| =B
to:3i. X[i]| =BA V). j#i = X[j]|#A AN X[i]=C

211l the program contains at least two threads
1= A
X[= A

the program could contain only one thread

3i. X[i]=8B

A
pre_t2(i)

19

Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C
Vi. X[i] = A (inital states)
t1: 34, 5.1 #jAX[i] =AAX[j]=AA X[i]| =B
to:3i. X[i]| =BA V). j#i = X[j]|#A AN X[i]=C

211l the program contains at least two threads
1= A
X[= A

the program could contain only one thread

Ji. X[i]=B
7y thus, t5 is not possible from that state

pre_t2(i)

19

How to Refine the Crash Failure Model 7

20

How to Refine the Crash Failure Model 7

2

3i. ... V). j=i =E())

-
>

20

How to Refine the Crash Failure Model 7

3i. ... V). j=i =%E())

-
>

20

How to Refine the Crash Failure Model 7

C3jj. .. D
Q. ... V). j=i =)

-
-

20

How to Refine the Crash Failure Model 7

20

How to Refine the Crash Failure Model 7

20

