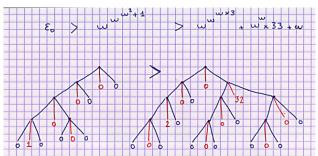
Opérateurs de description en Coq

Pierre Castéran¹

Le contexte : Travail sur les preuves de terminaison et les ordinaux

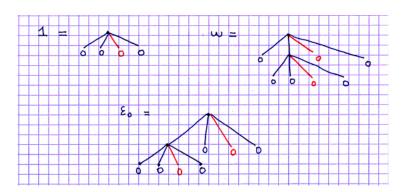
▶ Preuve de terminaison des suites de Goodstein et des batailles d'Hydre, utilisant des ordinaux en forme normale de Cantor :



- On définit un ordre total, décidable, bien fondé (preuve par plongement dans le rpo),
- une arithmétique (successeur, addition, multiplication, exponentiation),
- on associe à toute hydre ou toute suite de Goodstein un ordinal,
- on prouve que la suite des ordinaux associés est strictement décroissante.

Extension de ce travail

On peut représenter des ordinaux plus grands à l'aide de *la forme normale de Veblen* :



Quelques difficultés

Représentation compacte, mais peu intuitive

```
Inductive T2: Set := 
  | zero : T2 
  | cons : T2 
ightarrow T2 
ightarrow nat 
ightarrow T2. 
  cons a b n c == \psi(a,b) 	imes (n+1) + c
```

▶ la relation d'ordre total associée est définie de façon inductive par 7 cas, genre :

```
lt_4 : \forall \alpha 1 \alpha 2 \beta 1 \beta 2 \text{ n1 n2 } \gamma 1 \gamma 2,

\alpha 2 < \alpha 1 \rightarrow

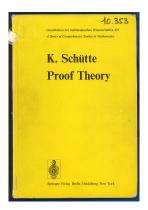
\cos \alpha 1 \beta 1 \text{ 0 zero } < \beta 2 \rightarrow

\cos \alpha 1 \beta 1 \text{ n1 } \gamma 1 < \cos \alpha 2 \beta 2 \text{ n2 } \gamma 2
```

L'exemple de l'addition

```
Fixpoint plus (alpha beta : T2) {struct alpha}:T2 :=
match alpha, beta with
 | zero, y => y
 | x, zero => x
    cons a b n c, cons a' b' n' c' =>
     (match compare (cons a b 0 zero)
                    (cons a' b' 0 zero)
      with | Lt => cons a' b' n' c'
           | Gt => (cons a b n (c + (cons a' b' n' c')))
           | Eq \Rightarrow (cons a b (S(n+n')) c')
      end)
 end
where "alpha + beta" := (plus alpha beta): g0_scope.
```

Afin de valider une telle représentation, il est nécessaire de prendre une référence mathématique :



Une Définition axiomatique des ordinaux dénombrables

Ax. I. \mathbb{O} is a set well-ordered by a relation <.

Ax. II. Every bounded subset of $\mathbb O$ is denumerable. That is: if, given $M \subset \mathbb O$ there exists $\alpha \in \mathbb O$ such that $\xi < \alpha$ for all $\xi \in M$, then M is a finite or denumerably infinite set.

Ax. III. Every denumerable subset of $\mathbb O$ is bounded. That is: for each finite or denumerably infinite set $M \subset \mathbb O$ there exists $\alpha \in \mathbb O$ such that $\xi < \alpha$ for all $\xi \in M$.

Corollary: O is an infinite, but not denumerable set.

Validation de la représentation des ordinaux

- ► Etablir un morphisme injectif des représentations en forme normale de Cantor ou Veblen (ou autres) vers l'ensemble des ordinaux dénombrables (par exemple selon Schütte)
- ▶ Première étape, traduire en *Coq* cette théorie axiomatique.
- L'analyse du discours de Schütte fait apparaître deux notions récurrentes :
 - fonctions partielles,
 - définitions de constantes à partir de preuves [classiques] d'existence

$$\frac{Y \text{ dénombrable } X \subseteq Y}{\bigsqcup X \leq \bigsqcup Y}$$

Les axiomes de Schütte permettent de définir la borne supérieure d'une partie dénombrable de \mathbb{O} .

$$\frac{Y \text{ dénombrable } X \subseteq Y}{\bigsqcup X \leq \bigsqcup Y}$$

```
| \ | : \ orall \ \mathtt{X} , denumerable \mathtt{X} \ 	o \ \mathtt{OT}
```

```
\forall X Y (D : denumerable Y)(H: Included X Y), 
 \bigsqcup X (denumerable_included X Y D H) \leq \bigsqcup Y D
```

$$\frac{Y \text{ dénombrable } X \subseteq Y}{\bigsqcup X \leq \bigsqcup Y}$$

$$\text{is_} \sqcup : \text{ Ensemble } \text{OT} \to \text{OT} \to \text{Prop}$$

$$\forall \text{ X Y x y, denumerable } \text{Y} \to \text{Included X Y} \to \text{is_} \sqcup \text{X x} \to \text{is_} \sqcup \text{Y y} \to \text{x} < \text{y}$$

$$\frac{Y \text{ dénombrable } X \subseteq Y}{\bigcup X \leq \bigcup Y}$$

Require Import Epsilon.

```
| \ | :  Ensemble OT 
ightarrow OT
```

$$\forall$$
 X Y, denumerable Y \rightarrow Included X Y \rightarrow | | X < | | Y.

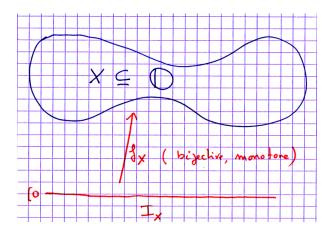
Définitions globales à partir de preuves d'existence

Considérons la définition de l'addition dans $\mathbb O$:

« $\alpha + \beta$ est le β -ième ordinal supérieur ou égal à α »

- ▶ Cette définition est une application d'une fonction d'énumération de l'ensemble des éléments de $\mathbb O$ supérieurs ou égaux à α ,
- ▶ En général, la locution « le β -ième élément de X » n'est pas partout définie.

Fonctions d'énumération



Le texte ci-dessous construit une fonction g point par point. Ce lemme est utilisé par la suite dans une construction (par induction transfinie) d'une fonction d'énumération de tout sous-ensemble de \mathbb{O} .

Lemma 3. If every proper segment of a set $B \subset \mathbb{O}$ has an ordering function then B also has an ordering function.

Proof. Let $f_{\beta}: A_{\beta} \to B(\beta)$ be an ordering function of $B(\beta)$ for each proper segment $B(\beta)$ of B. By Ax. II the set $B(\beta)$ is denumerable. Since f_{β} is bijective, A_{β} is also denumerable and therefore a proper \mathbb{O} -segment. Therefore to each ordinal $\beta \in B$ there is an ordinal $g(\beta)$ such that $A_{\beta} = \mathbb{O}(g(\beta))$. g is a map from B into \mathbb{O} .

L'opérateur de description indéfinie et ses dérivés

```
Logic.ClassicalEpsilon (requires Classical)
Axiom constructive_indefinite_description :
   forall (A : Type) (P : A \rightarrow Prop),
   (exists x, P x) \rightarrow { x : A | P x }.
epsilon : \forall A: Type, inhabited A \rightarrow (A \rightarrow Prop) \rightarrow A.
epsilon_spec
       : \forall (A : Type) (i : inhabited A) (P : A \rightarrow Prop),
         (\exists x : A, P x) \rightarrow P \text{ (epsilon i P)}
```

Opérateurs dérivés

```
hilbert/Epsilon.v
Definition iota (A:Type)(i : inhabited A)
                       (P: A \rightarrow Prop) : A :=
 epsilon i (unique P).
Definition the_fun (i : inhabited B)(D : A→Prop)
         (R:A \rightarrow B \rightarrow Prop)
         (pi : \forall a, D a \rightarrow \exists! b, R a b)
         : A→B :=
 fun a: A \Rightarrow iota i (fun (b:B) \Rightarrow D a \land R a b).
```

Un exemple : la définition de l'addition

```
Definition alpha_th (B: Ensemble OT):=
   epsilon
     (inhabits (fun alpha => alpha))
     (fun f =>
         ordering_function f (the_ordering_segment B) B).
Lemma alpha_th_ok
     : \forall B : Ensemble OT,
       Included B ordinal ->
       ordering_function (alpha_th B)
                          (the_ordering_segment B) B
```

Définition de l'addition (suite)

```
Definition plus alpha : OT \rightarrow OT := alpha_th (ge alpha).
```

```
Notation "alpha + beta " := (plus alpha beta) : ord_scope.
```

Tactiques associées

```
/*Une fonction f normale sur X est une fonction d'énumération continue de \mathbb O dans X*/ Lemma normal_plus_alpha : \forall \ \alpha, ordinal \alpha \rightarrow normal (plus \alpha) (ge \alpha). Proof. intros; unfold plus; epsilon_e (alpha_th (ge \alpha)).
```

```
alpha: Well_Orders.M ON
H : ordinal alpha
\exists x : OT \rightarrow OT.
  ordering_function x (the_ordering_segment (ge alpha))
                          (ge alpha)
subgoal 2 is:
\forall x : OT \rightarrow OT,
 ordering_function x (the_ordering_segment (ge alpha))
                         (ge alpha) \rightarrow
 normal x (ge alpha)
```

Suite de la preuve, utilisant le théorème suivant :

« Si $X \subseteq \mathbb{O}$ est non borné et clos par \bigsqcup , alors toute fonction d'énumération de X est normale. »

Respect de la structure du discours mathématique

denumerable and therefore a proper \mathbb{O} -segment. Therefore to each ordinal $\beta \in B$ there is an ordinal $g(\beta)$ such that $A_{\beta} = \mathbb{O}(g(\beta))$. g is a map from B into \mathbb{O} .

```
Section beta fixed.
 Variable beta : OT.
 Hypothesis beta_B : In B beta.
 . . .
 Definition g := iota inh_OT
                      (fun o \Rightarrow ordinal o \land
                                   A_{\text{beta}} = \text{members o}.
End beta fixed.
Lemma g_def : \forall \beta:OT, In B \beta \rightarrow
                     A_beta \beta = members (g \beta).
```

Bilan provisoire

- ► L'opérateur de description indéfinie permet de décrire facilement les fonctions partielles, et des constructions classiques du discours mathématique
- Les énoncés de théorèmes ne demandent pas d'adaptation,
- ▶ La traduction de certaines définitions peut donner lieu à des expressions complexes (opérateurs de description emboîtés, points-fixes de fonctions mutuellement récursives), mais il suffit d'en dériver les égalités paraphrasant ces définitions.

Non incompatibilité avec le *Coq* usuel, moyennant quelques précautions :

- ▶ incompatibilité avec l'imprédicativité de Set,
- ▶ transformation de $P \lor Q$ en $\{P\} + \{Q\}$ (en utilisant *epsilon*),
- ▶ transformation de $P \lor \neg P$ en $\{P\} + \{\neg P\}$ (en utilisant seulement *iota*)
- ▶ Utilisation du système de modules : Le module *EPSILON0* est en « Coq pur ». Le lemme ci-dessous établit la relation entre une représentation effective de l'ordinal ω , et sa définition mathématique classique.

Lemma omega_omega : inject EPSILONO.omega = omega.

À faire :

- Considérer d'autres corpus,
- Structures syntaxiques adaptées (cf le travail de Pierre Corbineau)
- Développer plus de tactiques spécialisées.