Operating Systems in Haskell:
Implementations, Models, Proofs

Andrew Tolmach
Invited Professor, INRIA Rocquencourt

The Programatica Project

Portland State University
ILavor Diatchki, Thomas Hallgren, Bill Harrison,
Jim Hook, Tom Harke, Brian Huffman, Mark Jones,
Dick Kieburtz, Rebekah Leslie, John Matthews,
Andrew Tolmach, Peter White, ...

JFLA '07 1

An O/S in Haskell?

* Kernel (scheduler,resource
management etc.) written in Haskell

* Does privileged hardware operations (I/0,
page table manipulation, etc.) directly

* (Some runtime system support, e.g. garbage
collection, is still coded in C)

* Test case for high-assurance software
development as part of Programatica
project

JFLA '07

Goals of High-Assurance
Software Development

* Prevent exploitable bugs

- e.g. ho more buffer overrun errors!

* Match behavioral specifications

- Requires development of specifications!

* Build systems with new capabilities

- e.g. multilevel secure systems allow
military applications at different security
classifications to run on single machine with
strong assurance of separation

JFLA '07

Programatica Project

* High-assurance software by construction,
rather than by post-hoc inspection

- "Programming as if properties matter!”

* Rely on strongly-typed, memory-safe
languages (for us, Haskell)

* Apply formal methods where needed

- "Mostly types, a little theorem proving"”
* Keep evaluation methodology in mind

- Common Criteria for IT Security Evaluation

JFLA '07

Structure of this talk

* Review of Haskell IO & monads

* P-Logic properties

* The H(ardware) Interface

* Implementing H on bare metal (with demol)
* Modeling H within Haskell

* (Proofs)

* Ongoing & Related Work; Some Conclusions

JFLA '07

Haskell: Safe & Pure

* Haskell should be good for high-assurance
development

* Memory safety (via strong typing +
garbage collection + runtime checks) rules
out many kinds of bugs

* Pure computations support simple equational
reasoning

* But...what about IO?

JFLA '07

Haskell: IO Actions

* Haskell supports IO using monads.

* "Pure values” are separated from "worldly
actions” in two ways

* Types: An expression with type 10 a has an
associated action, while also returning a value
of type a

* Terms: The monadic do syntax allows multiple
actions to be sequenced

JFLA '07 7

IO Monad Example

* Read a character, echo it, and return a
Boolean value that says if it was a newline:
do ¢ <- getChar
putChar c

return (c == '\n')

* Makes use of primitive actions

getChar :: IO Char
putChar :: Char -> IO ()

return cs a -> I0 a
JFLA '07

do Typing Details

10 ()

(actions without
“v <= .

Ily ha

IO Bool

(the type of the last action also
determines the type of the entire

|:: Char L;;’}O Char

do| c| <- |getChar

do expression)
=

putChar c

return (c == '\n')

JFLA '07

Building larger Actions

* We can build larger actions out of smaller ones,
e.g. using recursion:

getLine :: IO String
getLine =
do ¢ <- getChar -- get a character
if ¢ == '\n' -—- if it’s a newline
then return "" -- then return empty string
else do 1 <- getLine -- otherwise get rest of
-- line recursively,
return (c:l) -- and return whole line

JFLA '07 10

When are IO actions performed?

* A value of type 10 a is an action, but it is
still a value; it will only have an effect when
it is performed

* In Haskell, a program's value is the value of
main, which must have type 10(). The
associated action will be performed when
the whole program is run

* There is no way to perform an action
corresponding to a subprogram by itself

JFLA '07 11

Overall Program Structure

main: :I0()

foo::I0 a bar: baz: :b->I0()

PR / K

f::I0 ¢ g::c->a sa->d k::b->I0 b

JFLA '07

/

j::d->b

12

Overall Program Structure

main: :I0()

foo::I0 a bar: baz: :b->I0()

PR / K

f::I0 ¢ g::c->a sa->d k::b->I0 b

JFLA '07

j::d->b

\ —

p::c->I0 a

13

Overall Program Structure

main: :I0()

foo::I0 a bar: baz: :b->I0()

PR / K

f::I0 ¢ g::c->a sa->d k::b->I0 b

JFLA '07

\ e

j::d->b
pni}"ss a

14

IO Monad Hides Many Sins

* All kinds of impure/non-deterministic ops:

- Mutable state (references and arrays)
- Concurrent threads with preemption
- Exceptions and signals

- Access to non-Haskell functions using
foreign function interface (FFI)

foreign import ccall “foo” Int -> IO Int
- Uncontrolled memory access via pointers

* For high-assurance programming, we need
to refine this monad

JFLA '07

The H(ardware) Monad
* Small, specialized subset of GHC IO monad

* Primitives for privileged IA32 operations
Physical & Virtual memory
User-mode execution
Programmed and memory-mapped I/0

* Partially specified by P-Logic assertions

Different sorts of memory are independent

Imost!
. Memory—safe(a most)

JFLA '07 16

Programatica Uses P-Logic

* Extend Haskell with type-checked property
annotations

* P-Logic for defining properties/assertions, e.g.:
property Inverses f g =
Vx . {f (g x)} === {x} A
{g (f x)} === {x}

assert Inverses {\x->x+1} {\x->x-1}

* We have built support tools for handling
properties and integrating provers, checkers, etc

JFLA '07 17

Independence via Commutativity

property Commute £ g =
{do x <- f; y <- g; return (x,y)} ===
{do y <- g; x <- f; return (x,y)}
property IndSetGet set get =
Vx. Commute {set x} {get}

property Independent set get set' get'
IndSetGet set get' A
IndSetGet set' get A ...
assert Vp,p'.(p # p') =
Independent {poke p} {peek p}

JFLA '07 {poke p'} {peek p'}

18

Summary of H types & operators

Physical memory User-space execution

PAddr Context
PhysPage Interrupt Progr'ammed I/0
allocPhysPage execContext Port
getPAddr inB/W/L
setPAddr outB/W/L
Memory-mapped IO
Virtual memory MemRegion
vAaddr setMemB/W/L
PageMap getMemB/W/L
PagelInfo
allocPageMap Interrupts
getPage IRO
setPage enable/disableIRQ

enable/disableInterrupts
JFLA '07 pollInterrupts 19

H: Physical memory
* Types:
type PAddr = (PhysPage, Wordl2)
type PhysPage -- instance of Eq

type Wordl2

-- unsigned 12-bit machine integers
* Operations:
allocPhysPage :: H (Maybe PhysPage)
getPAddr :: PAddr -> H WordS8
setPAddr :: PAddr -> Word8 -> H()

JFLA '07 20

H: Physical Memory Properties

* Each physical address is independent of all
other addresses:
assert Vpa,pa'.(pa # pa') =
Independent {setPAddr pa}
{getPAddr pa}
{setPAddr pa'}
{getPAddr pa'}

* (Not valid in Concurrent Haskell)

JFLA '07

H: Physical Memory Properties(II)

* Each allocated page is distinct:

JFLA '07

property Returns x

{| m | m === {do m; return x} |}

property Generative £
= Vm.{do x <- £f; m; y <- £;
return (x == yvy)}
:: Returns {False}

assert Generative allocPhysPage

22

H: Virtual Memory

* Types and constants

JFLA '07

type VAddr = Word32

minVAddr, maxVAddr :: VAddr

type PageMap -- instance of Eq

data PagelInfo =

PageInfo{ physPage :: PhysPage,

writable :: Bool,
dirty :: Bool,
accessed :: Bool }

23

H: Virtual Memory (IT)

* Operations:
allocPageMap :: H (Maybe PageMap)
setPage :: PageMap -> VAddr ->
Maybe PageInfo -> H Bool

getPage :: PageMap -> VAddr ->

H (Maybe PagelInfo)
* Properties:

assert Generative allocPageMap

JFLA '07

H: Virtual Memory Properties

* All page table entries are independent:
assert Vpm,pm',va,va'.
(pm # pm' V va # va') =
Independent {setPage pm va}
{getPage pm va}
{setPage pm' va'}
{getPage pm' va'}

* Page tables and physical memory are
independent

JFLA '07 25

H: User-space Execution

execContext :: PageMap -> Context ->

H(Interrupt,Context)

data Context =
Context{eip,ebp,eax,...,eflags: :Word32}
data Interrupt =
I DivideError | I NMInterrupt| ... |
I PageFault VAddr |
I ExternalInterrupt IRQ |

I ProgrammedException Word$8

JFLA '07 26

Using H: A very simple kernel

type UProc = UProc { pmap :: PageMap, code :: [Word8],
ticks :: Int, ctxt :: Context, ...}
exec uproc =
do (intrpt,ctxt') <- execContext (pmap uproc) (ctxt uproc)
case intrpt of
I PageFault fAddr ->
do fixPage uproc fAddr
exec uproc{ctxt=ctxt'}
I ProgrammedException 0x80 ->
do uproc' <- handleSyscall uproc{ctxt=ctxt'};
exec uproc'
I _ExternalInterrupt IRQO | ticks uproc > 1 ->
return (Just uproc{ticks=ticks uproc-1,ctxt=ctxt'})

JFLA '07 : 27
-> return Nothing

Using H: Demand Paging
fixPage :: UProc -> VAddr -> H ()
fixPage uproc vaddr | vaddr >= (startCode uproc) &&
vaddr < (endCode uproc) =
do let vbase = pageFloor vaddr
let codeOffset = vbase - (startCode uproc)
Just page <- allocPhysPage
setPage (pmap uproc) vaddr
(PageInfo {physPage = page, writable = False,
dirty = False, accessed = False})
zipWithM setPAddr
[(page,offset) |offset <- [0..(pageSize-1)]
(drop codeOffset (code uproc))

JFLA '07 28

A User-space Execution Property

* Auxiliary property: conditional independence
property PostCommute f g = {| m |

{do m; x <- £; y <- g; return (x,y)} ===

{do m; y <- g; x <- f; return (x,y)} |}

* Changing contents of an unmapped physical
address cannot affect execution
assert Vpm,pa,c,x,m .
m ::: NotMapped pm pa =
m ::: PostCommute {setPAddr pa x}

LA o7 {execContext pm c}

Other User-space Properties

* If execution changes the contents of a
physical address, that address must be
mapped writable at some virtual address
whose dirty and access flags are set

* (Execution might set access flag on any
mapped page)

JFLA '07

30

H: I/0 Facilities

* Programmed I/0

type Port = Wordlé6
inB :: Port -> H WordS8
outB :: Port -> Word8 -> H()

- and similarly for word16 and Word32

* Ports and physical memory are distinct
(except for

buggy DMAI)
{outB p} {inB p}

{setPAddr pa}
{getPAddr pa}

JFLA '07 31

assert Vp, pa. Independent

H: I/0 Facilities (IT)
* Memory-mapped I/O regions
- Distinct from all other memory

- Runtime bounds checks on accesses

* Interrupts
data IRQ = IRQO | ... | IRQ15
enableIRQ, disableIRQ :: IRQ -> H()

enableInterrupts,disableInterrupts ::

endIRQ :: IRQO -> H()

JFLA '07

H()

32

H on Real Hardware

H Interface

X86 Hardware

JFLA '07

House Osker other
(demo (L4 p-kernel) kernels
kernel)
c Haskell code for H
S ~1500 loc
C
u GHC Runtime System
r (coded in C)
" lazy evaluation, 6C
n | ~35K loc
¢ | Extra C & Asm code for H
y | ~2200 loc

33

H on Modeled Hardware

- Helps develop and check properties

H Interface

plain Haskell

JFLA '07

House

Osker

other
kernels

Model of H

(coded in Haskell)

House: A demonstration kernel

* Multiple user processes supported using
GHC's Concurrent Haskell primitives

* Haskell device drivers for keyboard, mouse,
graphics, network card (some from the
hOp project [CarlierdBobbio])

* Simple window system [Noble] and some demo
applications, in Concurrent Haskell

* Command shell for running a.out binaries as
protected user-spaces processes

JFLA '07 35

hello.c loop.c

#include "stdlib.h"

main () {
static char n[] = "JFLA 2007"; for (33)3
main () { ;
char *c = (char *) malloc(strlen(n+1));
strepy(c,n);
printf("Bonjour %s!\n", c);
exit(6*7); div.c
} (]
main () {
int a =10/ (fib(5) - fib(5));
}

int fib(int x) {

if (x <2) return x;

else return fib(x-1) + fib(x-2);
}

JFLA '07

36

Why "House"?

Environment

Haskell

JFLA '07

Operating

User

System

37

Why "House"?

* You are more secure in a House ...

I

i n[
M1 HH‘
1l

NI
T

I

i
N
I

JFLA '07

Why "House"?

* You are more secure in a House ...

{
i
.

i)

=

i
EEE
i

* ... than if you only have Windows

JFLA '07 39

Osker: A L4-based kernel

* L4 is a "second-generation” p-kernel design
* Relatively simple, yet realistic

* Well-specified binary interface

* Multiple working implementations exist

* Can use to host multiple, separated versions
of Linux

* No use of GHC concurrency in kernel

* Main target for separation proof

JFLA '07

40

(hutte,bouge)

Hovel: A kernel for trying proofs

* Extremely simple, but still executable on
real hardware

* Round-robin scheduler

schedule :: [UProc] -> H a
schedule [] = schedule []
schedule (u:us) =
do r <- execUProc u
case r of
Just u' -> schedule (us++[u'])

TELA 07 Nothing -> schedule us

41

Process Separation

* Define observable events
trace :: String -> H ()

- outputs to a debug trace channel
* E.g. trace output system calls for a
nominated process u
* Separation property is roughly

Vus.trace(schedule [u]) =

trace (schedule (u:us))

JFLA '07

42

Formalizing Traces

* What does === mean for H computations?

- H is a special monad that is not definable
within Haskell

* Could take H properties as axiomatization

- Complete? Consistent?

* Could give a separate semantics for H

- Completely outside Haskell, or
- Modelled as an ADT within Haskell

JFLA '07

43

Modelling H with Traces

newtype H a = H (State -> (Trace,State,a))
Monad of state + output

type Trace = [String]~

Potentially infinite stream

data State = {memory::Mem,
interrupts::0racle, ...}
type Mem = PAddr -> Byte

type Oracle = [(Int,IRQ)]
T How many cycles to

wait until "delivering”
next interrupt (IRQ).

runH :: State -> H a -> (Trace,State,a)
JFLA '07 44

Using model instead of “real” H
* Instead of treating H in a special way (as
ordinary Haskell treats IO), we install an
implementation of the model as a monad:
instance Monad H where
bind = bindH

return = returnH

* Allows us to use the do-notation "“for free" :

do {x <- el; e2}

is just syntactic sugar for
bind el (\x -> e2)

JFLA '07

45

Defining H Model in Haskell

Cheating a little
type H a = State -> (Trace,State,a)

runH s h = h s

returnH x = \s -> ([],s,a)

bindH :: Ha -> (a ->Hb) ->HDb
bindH h k = \s -> let (tl,sl,xl1l) = h s

(t2,s2,x2) = k x sl
in (tl1 ++ t2,s2,x2)

trace w = \s -> ([w],s,())
allocPhysPage = \s ->

execContext pm ¢ = \s ->

Ao ete, etc... 4

Separation, More Formally

* Finally, a precise specification of separation:
VstateVus.
{fst (runH state (sched [u]))}

{fst(runH state (sched (u::us)))}

* Needs to be guarded with assumptions about
independence of us, adequate resources, etc.

* Now, how do we prove it...?

JFLA '07 47

Ongoing work: Proof Approaches

* Pencil & paper proof sketch of separation
for Hovel

- Working on automation in Coq

 Automated translation of Haskell code into
Tsabelle/HOLCF

- In progress; based on GHC Core
* Do we integrate programming & proving?
Not yet!

* Related work for Haskell: Chalmers

JFLA '07 48

Ongoing work: Operating Systems

* Completing the Osker separation kernel

* With Galois Connections: HALVM (Haskell
Lightweight Virtual Machine) = GHC on Xen

* With Intel: Haskell modelling of another
(proprietary) microkernel

* Other related work: selL.4, Coyotos,
Singularity, efc.

JFLA '07 49

Ongoing work: Runtime Systems

* Large GHC RTS is big assurance headache
* Working to shrink and modularize RTS

* Current focus: proving correctness of GC

- In context of Gallium Compcert project

- Investigating existing systems for proving
correctness of imperative pointer programs

* Other big goals: simple concurrency; safe
foreign function interface

JFLA '07 50

Which Kernel Concurrency Model?
Implicit House v, Explicit Osker

(e.g.,using Concurrent

Haskell)
IRQ gets fresh thread Must poll for IRQs
Natural kernel code Kernel code all monadic
Simple properties fail Properties should hold
No scheduler control Complete scheduler control

(maybe being fixed in GHC) |
Doesn t extend to MPs

installHandler:: pollInterrupts::

IRQ -> H() => H() H [IRQ]

JFLA '07 51

Haskell for Systems Programming?

* To a first approximation, runtime efficiency
is probably not very important for an OS!

* House works in spite of Haskell's limitations

- Garbage collection any time
- Laziness causes lots of overhead
- Very hard to tune time & space performance

* But we are planning Systems Haskell dialect
- Strict evaluation

- Detailed control over data layout [Diatchki]

waor - Related work: Cyclone project 2

Haskell for Execution & Modeling?

* Monadic ADT framework based on constructor
classes works well

- Easy to swap between "real” and "model”
semantics for client code

- Ability to change meaning of bind is key
* Lack of proper module system is a big problem

- At the very least, need explicit interfaces

JFLA '07 53

Haskell for Mechanized Proof?

* Haskell was a poor choice

- Big language; had no formal semantics!
- Laziness greatly complicates P-Logic
- Types help but are too static

* But distinguishing pure and impure
computations is a good idea

- Related work: "Hoare type theory”
* Distinguishing terminating computations
would probably be worthwhile too

JFLA '07

54

JFLA '07

Thank youl

55

