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Background
Dependencies of MathComp-Analysis

Coq

classical axioms

SSReflect [Gon08]

MathComp [GAA+13]

coq-mathcomp-classical

MathComp-Analysis



Motivation
(besides advertising MathComp-Analysis. . . )

The MathComp-Analysis library:

▶ started with asymptotic reasoning
▶ this led to a theory of derivatives [ACR18]

▶ extended with Lebesgue integration [AC23]

▶ sample applications:
▶ formalization of quantum programs [ZBS+23]
▶ formalization of probabilistic programs [ACS23, SA23]

⇒ Link derivatives and Lebesgue integration

⇒ Fundamental Theorem of Calculus for Lebesgue integration



The first FTC for Lebesgue integration

Statement:

▶ For an integrable function f , define F (x)
△
=

∫ x
−∞ f(t)dt.

Then F is derivable and F ′(x)
a.e.
= f(x).

Proofs:

▶ Using theorems already in MathComp-Analysis
(the dominated convergence theorem, Fatou’s lemma, etc., see [AC23])

▶ ✓ As a consequence of the Lebesgue Differentiation
theorem
▶ whose proof requires formalization of new standard lemmas
▶ which has other applications in itself



Lebesgue Differentiation theorem
Statement

Average of f over A:

[f ]A
△
= 1

µ(A)

∫
y∈A |f(y)|(dµ)

Definition iavg f A :=

(fine (mu A))^-1%:E *

\int[mu]_(y in A) `| (f y)%:E |.

Deviation of f over B(x, r):

fB(x,r)
△
= [λy.f(y)− f(x)]B(x,r)

Definition favg f x r :=

iavg (center (f x) \o f)

(ball x r).

Lebesgue point of f at x:
fB(x,r) −−−−→

r→0+
0

Definition lebesgue_pt f x :=

favg f x r @[r --> 0^'+] --> 0.

Lebesgue differentiation thm:
when f is locally-integrable,
we have Lebesgue points a.e.

Lemma lebesgue_differentiation f :

locally_integrable setT f ->

{ae mu, forall x, lebesgue_pt f x}.



Lebesgue Differentiation theorem
Problem reduction

Lemma lebesgue_differentiation f :

locally_integrable setT f ->

{ae mu, forall x, lebesgue_pt f x}.

↓

Reduce the problem to

fk
△
= f1Bk

with Bk
△
= B(0, 2(k + 1)) [Sch97, (5.12.101)]

↓

Lemma lebesgue_differentiation_bounded f :

let B k := ball 0 k.+1.*2%:R in

let f k := f \* \1_(B k) in

(forall k, mu.-integrable setT (EFin \o f k)) ->

forall k, {ae mu, forall x, x \in B k -> lebesgue_pt (f k) x}.



Lebesgue Differentiation theorem
Lemma lebesgue_differentiation_bounded (f : R -> R) :

let B k := ball 0 k.+1.*2%:R in

let f k := f \* \1_(B k) in

(forall k, mu.-integrable setT (EFin \o f k)) ->

forall k, {ae mu, forall x, x \in B k -> lebesgue_pt (f k) x}.

Proof idea:

▶ Show that ∀a > 0, Bk ∩
{
x | a < lim sup

r→0
fkB(x,r)

}
︸ ︷︷ ︸

∗∗

is negligible

. . .

▶ . . . by exhibiting continuous functions gi such that

∗∗ ⊆
⋂
n

Bk ∩
(
{x | fk(x)− gn(x) ≥ a/2}︸ ︷︷ ︸

(a)

∪

{x |HL(fk(x)− gn(x)) > a/2}︸ ︷︷ ︸
(b)

)

(a)→ Markov’s inequality + “continuous functions dense in L1”

(b)→ Hardy-Littlewood max. ineq. (HL(f)(x)
△
= supr>0{[f ]B(x,r)})



Lebesgue Differentiation theorem: proof organization

FTC for Lebesgue integration Lebesgue’s density theorem

Lebesgue Differentiation theorem

Lebesgue Differentiation theorem (bounded)

Hardy-Littlewood maximal inequality

Vitali’s lemma

Continuous functions are dense in L1

Lusin’s thm

Inner regularity

Inner regularity (bounded)

Outer regularity

Egorov’s thm

Tietze’s thm

Urysohn’s lemma



Sample lemma: Vitali’s covering lemma (finite case)

Context {I : eqType}.

Variable B : I -> set R.

Hypothesis is_ballB : forall i, is_ball (B i).

Hypothesis B_set0 : forall i, B i !=set0.

Lemma vitali_lemma_finite s :

{ D | [/\

{subset D <= s},

trivIset [set` D] B &

forall i, i \in s -> exists j,

[/\ j \in D,

B i `&` B j !=set0,

radius (B j) >= radius (B i) &

B i `<=` 3 *` B j] ] }.

Formalization notes:

▶ When is_ball A, the set A has a center-point and a radius.
Since A is set, a closed ball can be written closure (B i).

▶ Generalizations in MathComp-Analysis:
the infinite case of Vitali’s lemma and Vitali’s theorem



Sample lemma: Tietze’s extension theorem

Given a normal space X

and a closed set A,

a function f continuous on A

can be extended

to a function g continuous

on the whole set

while preserving boundedness.

Context {X : topologicalType}

{R : realType} (A : set X).

Hypothesis normalX : normal_space X.

Hypothesis clA : closed A.

Lemma continuous_bounded_extension f M :

0 < M -> {within A, continuous f} ->

(forall x, A x -> `|f x| <= M) ->

exists g, [/\ {in A, f =1 g},

continuous g &

forall x, `|g x| <= M].

▶ {within A, continuous f} states the continuity of f with a
subspace topology
▶ we can write f (x + eps),

still continuity only depends on the values in A

▶ using a sigma-type {x | A x} with the weak topology would
be at best cumbersome



Applications of the Lebesgue Differentiation theorem

▶ FTC(reminder):

For f ∈ L1 , F (x)
△
=

∫
t∈]−∞,x] f(t)(dλ) is derivable and

F ′(x)
a.e.
= f(x):

Lemma FTC f : mu.-integrable setT (EFin \o f) ->

let F x := (\int[mu]_(t in `]-oo, x]) (f t))%R in

forall x, lebesgue_pt f x ->

derivable (F : R^o -> R^o) x 1 /\

(F : R -> R^o)^`() x = f x.

▶ Lebesgue density theorem:

Given A measurable, lim
r→0+

µ(A ∩B(x, r))

µ(B(x, r))
is 0 or 1 a.e.:

Lemma density A : measurable A ->

{ae mu, forall x,

mu (A `&` ball x r) * (fine (mu (ball x r)))^-1%:E

@[r --> 0^'+] --> (\1_A x)%:E}.



Related work

▶ In Coq
▶ FTC for the Riemann integral: in CoRN (constructive)

[Cru02], Coq standard library (classical)

▶ In NASAlib
▶ no first FTC for Lebesgue integration but an elementary

proof (for a C1 function) of the second FTC [NAS23a]

▶ in Isabelle/HOL:
▶ first FTC for continuous functions [AHS17, Sect. 3.7]

▶ in Lean:
▶ several variants of the first FTC (yet, different hypos/goals)
▶ lemma similar to the LDT strengthened with nicely

shrinking sets
▶ Lebesgue’s density theorem [Nas23b] (using the LDT)



Summary

We brought to Coq:

▶ the first FTC for Lebesgue integration using the Lebesgue
Differentiation theorem

▶ the formal proof is decomposed in standard lemmas

▶ other MathComp-Analysis improvements
(lim sup / lim inf, semicontinuity, . . . )

▶ there is even new mathematics inside

▶ new proof of Urysohn’s lemma by Zachary

Please consider using MathComp-Analysis version 1.0.0!



Current work
Towards the second FTC for Lebesgue integration

first FTC for
Lebesgue integration ✓

Lebesgue’s density
thm ✓

Lebesgue differentiation
thm ✓

Radon-Nikodým
thm [IA24] ✓

Lebesgue-Stieltjes
measure [IA24] ✓

Theory of bounded/
total variation ✓

Theory of absolutely
continuous functions

second FTC for
Lebesgue integration
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