A diagram editor to mechanise categorical proofs

Ambroise Lafont

JFLA, 30 January 2024

Packaging

A standalone desktop program

A web app that runs locally in your browser (without mechanisation features)

https://amblafont.github.io/graph-editor/index.html

ANR Project¹ (2023 - 2027): Coq-based Rewriting: Towards Executable Applied Category Theory

Related software: Quiver

"a modern, graphical editor for commutative and pasting diagrams, capable of rendering high-quality diagrams for screen viewing, and exporting to LaTeX via tikz-cd."

Comparison with quiver

About the same size (around 10k of LoC)

	Quiver	YADE
Programming Languages	Languages JavaScript 90.7% CSS 5.3% TeX 2.4% Other 1.6%	Languages Elm 72.6% HTML 12.7% TeX 8.5% TypeScript 4.7% JavaScript 1.5%
Styling options	+	-
User-friendly	+	-
Editing features	_	+ Tabs, copy & paste, find & replace, expand selection to connected components,
LaTeX export	yes	yes ¹

Comparison with quiver

About the same size (around 10k of LoC)

	Quiver	YADE
Programming Languages	Languages JavaScript 90.7% CSS 5.3% TeX 2.4% Other 1.6%	Languages Elm 72.6% HTML 12.7% TeX 8.5% TypeScript 4.7% JavaScript 1.5%
Styling options	+	-
User-friendly	+	-
Editing features	-	+ Tabs, copy & paste, find & replace, expand selection to connected components,
LaTeX export	yes	yes ¹
Mechanisation features	-	+

¹ Implemented by Tom Hirschowitz

Architecture

(+ Coq library for custom notations)

Natural transformations compose:

Architecture

Building the diagrammatic proof interactively

 $Hf \circ n_a = nb \circ$

1) Select a subdiagram

2) Create a proof node, labelled with the Coq tactic naturality.

 \Rightarrow Coq (in vscode) checks that this tactic solves the goal:

 \Rightarrow The diagram gets completed in YADE:

- The unnamed arrow is refined by Coq's inferred instantiation
- The proof node is marked as validated (indicated by a green \checkmark)

Demo¹ of YADE

(Based on the category theory library of Hierarchy Builder + custom tactics & notations)

A distributive law $\delta: TS \Rightarrow ST$ between two monads S and T induces a monad structure on ST.

Let us show that the induced multiplication $STST \xrightarrow{S\delta T} SSTT \xrightarrow{\mu^S \mu^T} ST$ is associative.