
Chamois: agile development of CompCert extensions
for optimization and security

David Monniaux

CNRS / Verimag

February 1ˢt, 2024

Joint work with Sylvain Boulmé (associate prof), Léo Gourdin, Cyril Six (PhD
students), Benjamin Bonneau, Nicolas Nardino (interns)

Villetaneuse n’a qu’à bien se tenir

CHEVREX

Contents

CompCert

Optimizations

Code restructuring

Security

Conclusion & Perspectives

CompCert

Formally verified C compiler, effort led by Xavier Leroy

“If compilation succeeds, then the assembly program matches the C program.”

Formally verified: compiler written in Coq
+ correctness theorem proved in Coq, a proof assistant (mathematical proof,
machine-checked)

Rationale for CompCert

Certain industries (avionics, nuclear…) must demonstrate that the object code is
equivalent to the source.

Conventional approach
Disable optimizations
“Human” comparisons
“This compiler worked in other safety-critical projects”

CompCert
Use the mathematical proof

Versions under discussion

“Official” releases
https://github.com/AbsInt/CompCert

Our own “Chamois” branch
for agile development https://gricad-gitlab.univ-grenoble-alpes.

fr/certicompil/Chamois-CompCert

https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Targets

▶ x86 and x86-64 (not idiomatic)
▶ ARM
▶ AArch64
▶ RISC-V 32- and 64-bit
▶ PowerPC
▶ (Chamois only) Kalray KVX

Correctness theorem

execution = trace of “externally visible events” (calls to external functions,
volatile variables accesses)

The trace at assembly matches the C trace.

Obtained by “forward simulation” (assembly simulates C) through “match”
relations

CompCert’s intermediate languages

CompCertC Clight C#minor Cminor CminorSel

RTLLTLLinearMachAsm

side-effects
out of

expressions
type elimination

loop simplification
stack allocation

of variables
instruction
selection

CFG construction
expr. decomp.

register
allocation

optimizationslinearization
of CFG

branch tunneling

layout of
stackframes

assembly
code generation

Backend phases

CompCertC RTL LTL Linear

Mach
BTL

MachblockAsmblock

Asm

Legend:
Brown: RISC-V only
Violet: AArch64+ARMv7+RISC-V+KVX
Red: AArch64+KVX
Teal: All (AArch64+ARMv7+RISC-V+KVX+PPC+x86)

Register

allocation

Linearization
of CFG

Stackframes
layout

Assembly code
expansions

Code Motion
Strength-reduction
Rewritings
Prepass scheduling
Dead Code Elimination

Peephole+Postpass scheduling

Optimizations

Branch
tunneling

The main difficulty

Optimizations etc. described quite informally in the literature.

Find good formalism definitions etc. to make proofs easier.

Same as with “formal mathematics” (Xena Project, Georges Gonthier…)

Contents

CompCert

Optimizations

Code restructuring

Security

Conclusion & Perspectives

A menu

1. oysters
2. veal blanquette

2.1 prepare blanquette
2.2 cook it

3. millefeuille
3.1 puff pastry

3.1.1 fold 1, wait 30 minutes
3.1.2 fold 2, wait 30 minutes
3.1.3 fold 3, wait 30 minutes
3.1.4 fold 4, wait 30 minutes
3.1.5 fold 5

3.2 cream

Scheduling

“Official” CompCert produces instructions roughly in the source ordering.

Not the best execution order in general!

Especially on in-order cores.

Our solution: verified scheduling

Contents

CompCert

Optimizations

Code restructuring

Security

Conclusion & Perspectives

Loop rotation

while (c) {
body ;

}

turned into

i f (c) {
do {

body ;
} while (c) ;

}

Allows precomputing the condition inside the loop body, changes 2 branches per
iteration into 1.

Loop peeling
while (c) {

body ;
}

turned into

i f (c) {
body
while (c) {

body ;
}

}

Makes sure that operations always executed inside the peeled loop body are
“available” for the next loop body.
(Together with global subexpression elimination, performs loop-invariant code
motion.)

Code morphisms

On control-flow graphs
Each node in the transformed program corresponds to a node in the original

Lockstep simulation = “the operations are the same on each side”

▶ loop unrolling
▶ loop peeling
▶ loop rotation
▶ factoring (= regroup CFG nodes according to

equivalence/congruence/bisimulation)

Global common subexpression elimination

Goals
▶ Replaces computation by move if value available in same register on all

incoming paths
▶ Replaces conditional branch by unconditional branch if condition statically

known on all incoming paths

Lazy code motion

Hoist loop-invariant code out of loops.

Proved by glue invariants + symbolic execution.

void mul42 (double ∗ t , in t n) {
for (in t i = 0 ; i <n ; i ++)

t [i] ∗= 4 2 ;
}

Move the constant 42 load out of the loop.

Strength reduction

for (in t i = 0 ; i <n ; i ++) {
r += t [i] ;

}

Naive compilation: t[i] means multiplication/shift, add, load.
Yet the address differs only by a constant offset across iterations!

Example: complex sum-product
typedef s t ruc t { double re , im ; } complex ;

i n l i n e void sum_complex (complex ∗ s , const complex ∗ a ,
const complex ∗ b) {
double r e = a−> re + b−> re ;
double im = a−>im + b−>im ;
s −> r e = r e ;
s −>im = im ;

}

i n l i n e void mul_complex (complex ∗ s , const complex ∗ a ,
const complex ∗ b) {
double r e = a−> re ∗ b−> re − a−>im ∗ b−>im ;
double im = a−> re ∗ b−>im + a−>im ∗ b−> re ;
s −> r e = r e ;
s −>im = im ;

}

Example: complex sum-product

void sumproduct_complex_array (complex ∗ s , in t n ,
complex ∗ a , complex ∗ b) {

complex r = { 0 . , 0 . } , p ;
for (in t i = 0 ; i <n ; i ++) {

mul_complex (&p , a+ i , b+ i) ;
sum_complex (& r , &r , &p) ;

}
s −> r e = r . r e ;
s −>im = r . im ;

}

Compiled complex sum-product main loop
.L102:

fld f29, 0(x12)
fld f12, 0(x13)
fld f14, 8(x12)
fld f11, 8(x13)
fmul.d f30, f29, f12
fmul.d f2, f14, f12
fmul.d f28, f14, f11
fmul.d f5, f29, f11
addi x14, x14, 1
addi x13, x13, 16
addi x12, x12, 16
fsub.d f3, f30, f28
fadd.d f0, f5, f2
fadd.d f4, f4, f3
fadd.d f1, f1, f0
blt x14, x5, .L102

Contents

CompCert

Optimizations

Code restructuring

Security

Conclusion & Perspectives

Stack canaries
On functions with local arrays etc. put a canary (special data) at the end.
If buffer overrun (“stack smashing”), abort execution.
Blocks attempts at corrupting the return address.

void swap (in t n , in t ∗ a , in t ∗ b) {
in t tmp [1 0] ;
for (in t i = 0 ; i <n ; i ++) tmp [i]= a [i] ;
for (in t i = 0 ; i <n ; i ++) a [i]= b [i] ;
for (in t i = 0 ; i <n ; i ++) b [i]= tmp [i] ;

}

in t main () {
s t a t i c in t ka [1 5] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 } ;
s t a t i c in t kb [1 5] = { 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 , 3 8 , 3 9 , 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 } ;
swap (1 5 , ka , kb) ;

}

$./localcopy
*** stack smashing detected ***: terminated
Aborted (core dumped)

Pointer authentication

(AArch64)

Return address mangled with a kind of hash depending on a secret key and the
stack pointer

Proof: axiomatization that de-mangling composed with mangling is identity

Bouquetin: work in progress

Countermeasures against hardware attacks (and some software attacks).
▶ redundant loads / redundant operations
▶ control-flow integrity by passing extra “magic numbers”

Proofs of

Correctness if no attack occurs, execution undisturbed

Adequacy if an attack occurs (within some constraints), execution either is
undisturbed or aborts

PEPR Cybersécurité “Arsene”

Contents

CompCert

Optimizations

Code restructuring

Security

Conclusion & Perspectives

How to prove things

▶ Need to rework analyses.
▶ Think carefully about invariants, what needs to be proved, what needn’t.
▶ Possibly split complex optimizations into distinct phases with simple

specification.
▶ Possibly split thing into an oracle and a checker.
▶ Any unclear / badly designed / delicate aspect of semantics will bite

you.

Rust

Verified compilation of Rust?

Thesis in progress on verified borrow-checker

Gratuitous advertisement

“gcc (at least quite a bit of it) but verified”

Our version of CompCert with optimizations not found in the “official” releases
+ the KVX target:
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/
Chamois-CompCert

https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

	CompCert
	Optimizations
	Code restructuring
	Security
	Conclusion & Perspectives

