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ABSTRACT. This article describes an efficient persistent mergeable data structure for map-

ping intervals to values. We call this data structure rangemap. We provide an example of appli-

cation where the need for such a data structure arises (abstract interpretation of programs with

pointer casts). We detail different solutions we have considered and dismissed before reaching

the solution of rangemaps. We show how they solve the initial problem. We then describe their

implementation and, as a conclusion, mention further work we would like to do.

RÉSUMÉ. Cet article décrit une structure de données représentant efficacement des tables

d’associations persistantes indexées par des intervalles, ayant la propriété supplémentaire

d’être fusionnable. Nous nommons (en anglais) rangemap cette structure de données. Nous

donnons un exemple de circonstances dans lesquelles se rencontre le besoin d’associer de cette

façon des valeurs à des intervalles (analyse par interprétation abstraite de programmes com-

portant des conversions de pointeurs). Nous détaillons différentes solutions envisagées puis

écartées avant d’arriver à la solution des rangemaps. Nous montrons ensuite comment ceux-ci

résolvent le problème initial. Enfin, nous décrivons leur implémentation avant d’évoquer les

travaux en cours et futurs que nous nous proposons de mener à ce sujet.
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1. Introduction

The problem at hand

The problem we are concerned with in this article is the representa-
tion of persistent maps indexed by intervals. The expected solution is a
data structure that allows to retrieve the value associated to an interval
when this interval has previously been used as the key in an insertion;
an additional constraint is that the representation must also be efficient
for finding what an interval is mapped to when this specific interval is
not employed as a key in the map. In this case, the data structure must
allow to retrieve all bindings that intersect the required interval, and let
these partial results be combined to the programmer’s liking.

As a concrete example, consider the modelization of the contents of
a char array during the abstract execution of a C program. Assume that
such platform characteristics as endianness and word size are known.
The C program may take the address of any cell in this array and cast
this address to an int*. If the run-time architecture allows it, the pro-
gram may then use this pointer to write an int (on a 32-bit architecture,
the int occupies four consecutive cells in the original char array). If
the same pointer (as cast to int*) is now dereferenced, it is desirable
to recover exactly the same abstract value that was previously written
there. If a char* pointing to one of the four aforementioned cells is
dereferenced, the result should be that the value read is a part of the
stored int. And lastly, if an 8-byte double is read from the same loca-
tion, the data structure should be able to indicate that the bits read are
made partly from the int, and partly from other values, each of which
may for instance have been written as a char previously.

In a concrete (say, hardware) implementation, the memory can be
considered as an unadorned char array. A multi-byte memory access
reads – or writes – several consecutive bytes, and that’s all there is to it.
In this case, there is no need to consider the memory as a map whose
keys are intervals. But in the case of abstract values, an unfortunate loss
of precision would occur if the same approach was employed. Consider
as an example of abstract value for a 32-bit word the pair {1, 258}. Pro-
jecting this word-level abstract value in abstract values for the compo-
nent bytes, we obtain the set {1, 2} for the least significant byte, {0, 1}
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for its neighbor, and {0} for the two most significant bytes. Now try-
ing to read back a word from the same location in memory, it appears
that the possible values for the data word are {1, 2, 257, 258}, an un-
acceptable approximation. Obviously, the component bytes of a data
word can not be stored independently without concern for the implicit
relationship between them.

For maximum generality, the data structure should not try to decide
how to read a single char from a stored int, or how to recompose
a double from several smaller values. Instead, it should be generic
and call user-provided functions to recompose values when appropriate.
Specifically, the structure should be generic enough that, by providing
the right functions, little, big, and unknown endiannesses can all be
accommodated.

Finally, C being an imperative programming language, the analy-
sis may involve merging together several execution branches where the
same char array has been modified in different ways. For good perfor-
mance, the data structure should be mergeable, in the exact same sense
as in Okasaki and Gill’s [10]. We informally define mergeability as the
following property:

Property 1 (Mergeability). When iterating in parallel on two instances
of the data structure, a divide-and-conquer approach allows to con-
sider separately the component substructures. Additionally, the results
obtained for these substructures can be cached, and have a good chance
to be useful later, when processing other instances that are only slightly
different from the initial ones.

The mergeability property is named in reference to the merge oper-
ation that takes two trees t1 and t2, and builds a tree where each key
contains the merge of the values associated to this key in t1 and t2. The
merge function can quickly check the subtrees that appear at the same
level in t1 and t2 for physical identity. If these subtrees are physically
equal, the computation of their merge is immediate (the result subtree
is in this case identical to the arguments). This can happen for instance
when t2 was created by slightly modifying t1, or, if hash-consing [2, 3]
is used to ensure maximal sharing, at every opportunity.
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Contents of the article

This article shows the development of an efficient solution to the
problem we have exposed. A starting point for the reflection is the
Patricia tree structure, summarized in Sect. 2. We show in Sect. 3 how
we considered various other solutions based upon AVL trees (Sect. 3.1)
and Patricia trees (Sect. 3.2 and Sect. 3.3). This eventually leads us to
describe the data structure answering our needs in Sect. 4. We have a
prototype implementation of rangemaps, from which we have extracted
relevant technical details in Sect. 5. Considerations about the future of
this work conclude this article in Sect. 6.

2. Reminder: Patricia trees

Morrison’s Patricia trees [9] provide a great technical solution for
mapping integers to values, when mergeability is important. In fact,
Patricia trees are rather unique in this respect, and they will serve as a
natural guide in our reflection.

Patricia trees are used to implement maps when there exists a natural
lexicographical order on the keys. When used with integers as keys, the
lexicographical order used is the comparison of the keys’ binary repre-
sentations. Either the little-endian or the big-endian representation can
be used as long as the same choice is used consistently. If the big-endian
representation is chosen, and assuming we have to deal only with pos-
itive integers (both assumptions we will make in the remainder of this
article), the lexicographical order on binary representations coincides
with the usual order of integers.

During the lookup of a key k in a Patricia tree, each node, starting
from the root, tests one bit in the binary representation of k in the lex-
icographical order. When, for a given prefix, all keys present in the
tree have the same value for the next bit, the comparison of this bit is
skipped, so that in general, it takes about log2(n) comparisons to get
the value associated to a key in a map of n bindings. There never are
any rebalancing in Patricia trees: the nodes of the tree are hierarchized
according to the lexicographical order that has been fixed in advance.
Patricia trees can therefore be unbalanced (a worst-case example is a
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map where the keys are 1, 2, 4, 8, 16. . . This map is represented as a
comb). However, the height of a Patricia tree is bounded by the base-2
logarithm of the difference between the values of its smallest and largest
key. If arbitrary 32-bit integers are used as keys, a Patricia tree can never
have an height higher than 32 (and a lookup never require more than 32
comparisons).

When maps indexed by a type key different from int are required, it
is still sometimes possible to employ Patricia trees. It may be a simple
matter of tagging each object of type key at creation with a unique
integer (e.g. an id field in a record type). This makes it possible to
use Patricia trees for representing maps from keys to values, by using
the id field as the actual key during lookups.

However, these maps may be expected to provide primi-
tives that give access to the original keys, e.g. a function
mapi: (key -> ’a -> ’b) -> ’a t -> ’b t. This may require to
keep in memory a reverse map from ids to keys. Alternatively, it is
possible to store in the Patricia tree, associated to the id, the original
key together with the value. In effect, the latter method overloads each
Patricia tree ever built so that it contains a copy of the reverse map for
all keys that appear in it. The latter method is more memory-efficient
when each possible key is used less than once on average. The former
method is more memory efficient when each possible key is used many
times (but note that a separate hashtable incurs overhead that needs to
be amortized, and that applying this method may require the use of a
weak hashtable).

3. Towards mergeable binary trees indexed by intervals

Consider now the problem of mapping non-overlapping intervals of
integers to values. A concrete use case for this structure was provided
in Sect. 1. The same property of mergeability that Patricia trees have is
expected of this data structure.

A data structure indexed by intervals

Mapping an interval to a value is not the same thing as mapping
all integers in the interval to this value. The former can sometimes be
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used as a concise representation of the latter in a kind of Run-Length
Encoding, as in diets [4]. In general though, the data structure should
not make assumptions about what happens when a new binding added to
a map overlaps with some of the bindings already in place. Behaviors
that may be useful are to remove the overwritten binding completely,
or more generally to alter the contents of the untouched parts of the
original binding to reflect the fact that they were part of a larger binding
that was partially overwritten. Providing these behaviors implies for
instance that the binding 0..31 → {22} is not the same thing as 32
individual bindings 0→ {22}, 1→ {22},. . .

The solution data structure should, for instance, be able to answer
queries such as finding all bindings that intersect a given interval. Being
able to do this is necessary for lookups, but also at the time of adding a
new binding, in order to maintain the invariant that the intervals in the
map are disjoint.

While it is possible to associate a unique integer to use as an id to
any interval, this solution, applied naively, would store the intervals in
the map without respect for their natural order, and as a consequence,
the whole tree would have to be explored in order to find the bindings
that intersect a given interval.

3.1. Using AVL trees with the natural interval order

Note that the intervals used as keys in a given map are guaranteed
to be disjoint. The first idea is therefore to order them according to
their natural order, which happens to be total among the keys of a single
tree. Many data structures have been proposed for representing maps
indexed by totally ordered keys as trees. In most of them, the tree struc-
ture can be taken advantage of to quickly look up a range of bindings.
As an example, the Map module in the OCaml standard library (imple-
mented with AVL trees [1]) can easily be augmented with functions for
looking up all bindings that intersect the query interval. The resulting
data structure, unfortunately, is no more mergeable than Map usually is.
Balancing operations interfere with sharing.
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3.2. Trying to use Patricia trees indexed by intervals

Since, for us, mergeability is an important criterion, and since Pa-
tricia trees have a reputation for being mergeable, it is natural to try to
representing the map as a big-endian Patricia tree, using for instance
the lower bound of each interval as its id. It may be possible to make
this representation work, but mergeability again suffers unexpectedly.
Consider indeed the example on Fig. 1.

•

•

0..47→ {11}

< 32

48..63→ {12}

≥ 32

< 64

64..100→ {13}

≥ 64

Figure 1: Interval map as a Patricia tree, using the minimum bound as
id

In Fig. 1, the binding 0..47→ {11} is stored in the leftmost binding,
but it contains information that may interfere with a differently located
binding in another tree.

•

•

0..31→ {13}

< 32

•

32..47→ {14}

< 48

48..100→ {15}

≥ 48

≥ 32

< 64

Figure 2: Another interval map represented as a Patricia tree

7



When computing the merge of the two trees from Fig. 1 and Fig. 2,
the divide-and-conquer approach does not work! The 0..47 binding in
the left-hand-side subtree of Fig. 1 contains information that is relevant
for computing other branches of the result. The computation of the
merge of such affected subtrees can therefore not be cached, since it
depends on external factors. This choice of representation is simply not
mergeable in the sense of Okasaki and Gill [10].

3.3. Trying to use Patricia trees indexed by integers

We will now say a word about a representation that is not the one that
we are proposing, but that seems to us a valid alternative. Patricia trees
can be made to omit the nodes whose children both eventually lead to
the same leaf anyway (making them even closer than they already are
to Binary Decision Diagrams working on the bits of the key). We have
not encountered this optimization in the literature, perhaps because it
requires comparing the values that are bound to the keys, which may be
expensive outside the context of hash-consing. This optimization can
be done by changing the Leaf constructor to contain a prefix instead of
a key (meaning that in this tree, all keys with this prefix are bound to
the same value). Then, it is only a matter of systematically replacing
applications of the Node constructor by a “smart constructor” function
which checks whether the left and right subtrees are both Leaf with the
same value, and builds a Leaf in this case.

With this optimization enabled, Patricia trees can efficiently repre-
sent identical bindings to long consecutive sequences of keys. It be-
comes feasible to represent the 0..47 → {12} binding as a binding
from each of the integers 0, 1,. . . , 47 to an identical something. This
something should of course contain the bound value {12}, but also the
interval that serves as key of this binding, so that an access inside the
interval (say, to the value bound to the interval 8..15) is allowed to re-
cover the information that this binding is part of a sequence that goes
from 0 to 47. In particular, adding a new binding to the interval 8..15 in
this tree should either transform the existing 0..47 → . . . binding into
three bindings 0..7, 8..15, 16..47 or into a single 8..15 binding depend-
ing on the desired semantics for overlapping writes. In both cases, it
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is necessary to have the information that the current binding at 8..15 is
really a sub-part of a binding to a larger interval, so that this binding can
be completely modified or removed. It would be necessary to make use
of zippers[8] in order to navigate efficiently from the bindings at 8..15
to the adjoining 40 bindings that used to be related to them.

As a foreseen drawback with this approach, note that the factoring
of identical bindings suggested here only works well when the binary
representations of the integers contained in the key interval are charac-
terized by a few common prefixes. A key such as 0..47 would require
two actual bindings in the tree to be represented (for 0..32 and 33..47).
A worst-case interval such as 0..62 woud require 6 actual bindings to
represent (for 0..31, 33..47, 48..55, 56..59, 60..61 and 62..62).

4. The solution we propose

We propose to build maps from intervals to values, with the same
mergeable quality that Patricia trees display for integer-indexed maps.
As a first difference from Patricia trees, but similarly to diets [4], in
our proposal bindings are recorded on the nodes, whereas Patricia trees
record bindings at the leaves. Diets are a data structure to represent
sets, when a total order, and successor and predecessor functions are
available for the elements – for instance, integers. Diets are efficient
when long sequences of consecutive elements commonly occur. On the
other hand, our proposal is a data structure for maps indexed by intervals
of integers, but using this structure to map intervals to a boolean gives
an implementation for sets of integers which it is instructive to compare
to diets.

4.1. Basic idea

Let us assume for simplicity that we are only interested in repre-
senting interval-indexed maps in which the keys, in addition to being
non-overlapping, are contiguous and always cover the same definition
interval. We will always use the interval 0..100 in the examples. For
consistency with this invariant, the function for creating a new map cre-
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ates a map with a single binding from the key 0..100 to the provided
value: val new_map : ’a -> ’a tree.

0..100→ {11}

Empty Empty

Figure 3: Tree for the map 0..100→ {11}

Such a map is represented in our data structure by a single node with
empty subtrees (see Fig. 3). From this point onwards, for the sake of
readability, when both subtrees of a node are empty, we omit them from
the figure.

A function add allows to change part of an existing map:

val add : int*int -> ’a -> ’a tree -> ’a tree

Let us consider what happens when calling add (20,30) {12}
on the initial tree created above. The resulting map has bindings
0..19 → {11}, 20..30 → {12}, and 31..100 → {11}. In fact, we
must not confuse the bindings at 0..19 and 31..100 for bindings con-
taining the value {11}: they are both remaining parts of a binding that
originally spanned the interval 0..100 and has been partially overwrit-
ten. In order to make this distinction explicit, we denote the map as
0..19→ {11}0..100, 20..30→ {12}, and 31..100→ {11}0..100

It is obvious how to arrange these bindings in a tree for easy retrieval:
with the lower bindings on the left-hand-side and the higher bindings on
the right-hand-side. What is not obvious is deciding which node goes
on top so that the tree ends up balanced or nearly balanced.

One possibility is to record the height of the trees and to build trees
that are balanced by construction. This amounts to using AVL trees [1]
with the natural order on intervals, which we proposed as an ad-hoc
solution in Sect. 3.1. Unfortunately, the re-balancing operations cause
the creation of physically different trees that contain the same sets of
bindings, that is, loss of mergeability.
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Another possibility, which preserves mergeability, relies on the same
idea that underlies Patricia trees. In Patricia trees, there is a static hi-
erarchy for deciding which node goes above the other, and this static
hierarchy ensures trees are balanced or almost balanced without any re-
balancing operations. We similarly define a static ordering on intervals
that tells which node must be placed above the others. Intuitively, the
interval containing the multiple of the largest power of two is put at the
top. Like the ordering in Patricia trees, this ordering has the bounded
chain length property (the bound is the 2-logarithm of the definition
interval’s width, give or take a couple of units).

We now define the ordering more formally.

Definition 1 (Rank of an interval). The rank of an interval I is defined
as:

rank(I) = (k | ∃x ∈ I x mod 2k = 0 ∧

(∀y ∈ I∀k′ y mod 2k′
= 0⇒ k′ ≤ k))

In particular, it follows from Def. 1 that any interval containing 0 has
any rank, because ∀k, 0 mod 2k = 0. We take as convention that the
interval containing 0 will always have the highest rank of all intervals
contained in a tree (this special value will be denoted as ∞). From
the definition of a rank, we can now define a strict partial order on our
intervals.

Definition 2 (Strict partial order over intervals, �i). Let I1 and I2 be
intervals.

I1 �i I2 ⇐⇒ rank(I1) > rank(I2)

This strict partial order has the additional property that two contigu-
ous intervals are always comparable.

Lemma 1 (Comparability of adjacent intervals). Let I1 and I2 be (non-
equal) adjacent intervals. Either I1 �i I2 or I2 �i I1.
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Proof. Let I1 = a1..b1 and I2 = a2..b2 with a2 = b1 + 1.
Now assume rank(I1) = rank(I2), i.e. ∃n1, n2, k, n12

k ∈ I1∧n22
k ∈

I2 with n1 < n2.

We know that ∃n n1 ≤ 2n ≤ n1 + 1 ≤ n2 (one of two consecutive
integers is even). Hence ∃n, n12

k ≤ 2n2k = n2k+1 ≤ n22
k. Either I1

or I2 contains the value n2k+1 as they are contiguous, therefore either
rank(I1) or rank(I2) is k + 1, contradicting our first assumption.

Fig. 4 shows the tree representation ordered with the rank func-
tion for the following bindings: 0..19 → {11}0..100, 20..30 →
{12}, 31..100→ {11}0..100.

0..19→ {11}0..100

Empty 31..100→ {11}0..100

20..30→ {12} Empty

Figure 4: Ordering nodes according to rank

In Fig. 4, the interval 0..19 is at the root because it contains 0. The
interval containing 0 is always at the root by convention. The interval
31..100 contains 64 = 26 whereas the interval 20..30 contains 24 =
3 ∗ 23, therefore the former goes above the latter. The 20..30 binding
ends up as left child of the 31..100 binding.

4.2. Pretty well mergeable

In Sect. 3.2, we claimed that Patricia trees in which lower bounds of
intervals were used as ids did not fit the mergeability constraint because
during a recursive descent on two separate trees, corresponding subtrees
would have different definition domains. Trying to merge the trees in
Fig. 1 and Fig. 2, for instance, one encounters the problem that the
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corresponding leftmost subtrees contains the bindings for 0..47 in one
tree and 0..31 in the other. To merge these subtrees in practice, it is
necessary to borrow the contents of the 32..47 range from the context
of the second tree.

The attentive reader may have noticed that the solution we are
proposing appears to suffer from a similar problem. During a recursive
descent of separate rangemaps (for instance in the context of a merge
operation), the definition domains for encountered subtrees may differ
too. This is in fact unavoidable, as the partitioning of the definition do-
main into intervals may not match at all between the two trees. With
rangemaps, it may too be necessary to patch the narrower subtree to
extend its definition domain to the same size as the other, in effect bor-
rowing bindings from its context.

The important difference is that in rangemaps, with the interval or-
dering that we defined, the “context” in which it is necessary to look
for bindings to borrow is limited. Specifically, only the most immediate
ancestor node from which we descended to the right, or the most im-
mediate ancestor from which we descended to the left, to the exclusion
of any other, need to be borrowed from. Both on the left-hand-side and
on the right-hand-side, there is at most one binding to move temporarily
to the narrowest subtree to equalize it. Because of the way the interval
ordering works, it is never necessary to look further than this parent.

To illustrate this claim, consider the example of two corresponding
rank 5 subtrees t1 and t2 (let us assume each subtree’s root binding
contains 32). The subtree that reaches the farthest to the right, t1, can
not span past 63. On the other hand, t2’s parent is the binding that
contains 64, and therefore, it is not necessary to look elsewhere than in
this parent node to get a piece of binding that equalizes the definition
domain of t2 with that of t1.

By contrast, in the solution from Sect. 3.2, an arbitrary number of
bindings may have to be borrowed to equalize the definition domains.
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4.3. Relative subtrees

An orthogonal optimization, mentioned here for completeness, is to
make all subtrees relative. The arrows between the nodes carry off-
sets that must be tracked when traversing the tree. The benefit ob-
tained in exchange for this additional complexity is that sharing (see
also Sect. 5.5) becomes possible within a single, repetitive map, in ad-
dition to the sharing between distinct but similar maps that other tree
representations usually allow. Note that this optimization is not specific
to rangemaps and can be adapted to most kinds of trees with numerical
keys.

0..19→ {11}0..100

Empty 0..69→ {11}0..100

0..10→ {12}

−11

Empty

+31

Figure 5: The same map as in Fig. 4, represented with relative subtrees

4.4. Automatic stitching of identical adjacent bindings

Yet a different, complementary optimization for compact represen-
tation of repetitive trees is to automatically stitch adjacent bindings to
the same value into a single, wider binding. This is in the spirit of what
Erwig proposed for diets [4]. However, because our data structure is a
map, requirements for stitching are more sophisticated. Values must be
identical, but also be stored with the same width, and the rightmost one
must start where the leftmost one ends.

To make this optimization easily applicable, we store the information
about the original span of the binding (that we denoted as a subscript
{11}0..100 in previous examples) in the form of a binding width (for this
example, 101) and an offset (for this example, 0).
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An example of binding that can be stitched to this one is 101..201→
{11}. It starts where the 0..100 binding finishes, and it contains the
same value (with the same width). With the (width, offset) represen-
tation, the criterion for recognizing that it is stitchable is that values,
widths, and offsets are identical for both bindings, and in addition, that
the stitching point (101) is congruent to offset modulo width (that is, the
point of stitching is actually a point where a value ends and a new one
can start). Stitching occurs in particular when adding a new node to an
already existing rangemap: this is illustrated in Fig. 7.

In the use case of abstract interpretation of C programs, it is clear
why it is undesirable to omit the last condition above: on a little-endian
architecture, a binding 0..0→ {1, 258}0..3 may be the abstract result of
taking the first byte of the concrete 32-bit value 1. The binding 1..3 →
{1, 258}0..3 may be the abstract result of taking the last three bytes of
the concrete 32-bit value 258. Stitching these two bindings together
into a single binding 0..3 → {1, 258} would be incorrect: the value
contained in these four bytes in a concrete execution, 257, would not be
represented by the abstract value {1, 258} resulting from the stitching.

On the other hand, when the stitching occurs at a point where a bind-
ing ends and another starts, no incorrectness results from stitching them
together. Indeed, these bindings are still considered as different bind-
ings after the stitching has occurred.

In effect, the optimization proposed in this section consists in enforc-
ing the invariant that “no two adjacent stitchable bindings coexist in the
rangemap”. Therefore, whenever a binding is added, or changed, in a
rangemap, the adjoining bindings must be checked for stitching possi-
bilities.

5. Implementation notes

We have implemented proof-of-concept rangemaps, and we hope to
soon be able to substitute this implementation to the existing, ad-hoc
interval-indexed maps in the value analysis of Frama-C [5]. This sec-
tion describes the OCaml implementation. Most functions in the imple-
mentation of rangemaps follow a divide-and-conquer pattern. There-
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fore, they can be cached, in the hope that partial results from previous
similar computations can be reused. In the context of Frama-C’s value
analysis, rangemaps can be expected to exhibit sharing both because of
the existence of maps that are slight variations of each other, and be-
cause of repetitive bindings within a single map. Caching allows to take
advantage of spatial sharing to gain in execution time.

5.1. Datatype

Rangemaps are trees built from the following algebraic datatype:

type t =
| Empty
| Node of Int.t *

(* max: min is always implicitly zero *)
Int.t * t *

(* offset_left * subtree_left *)
Int.t * t *

(* offset_right * subtree_right *)
Int.t * Int.t * V.t

(* offset * modulo * value *)

Tree nodes carry the following information:

– the length of the interval (max+1);
– where (offset_left, offset_right) and what (subtree_left,

subtree_right) its left and right children are. These offsets are com-
puted as the difference between the lower bound of the child and that of
the parent;

– the data bound to the interval, i.e a value repeated each modulo
starting from offset.

5.2. Construction of values

Construction of values of the type t is done exclusively using so-
called “smart constructors”. This enforces various invariants including
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that of Sect. 4.4. Only the module implementing the rangemaps has
direct access to the algebraic constructors (t is abstract but could as
well have been declared private).

Huet’s zippers [8] are also used in the implementation to allow effi-
cient navigation from a node to its neighbors. Another use of zippers
takes place in the stitching phase of Sect. 4.4: they represent the context
in which the subtrees of the node to be stitched should be re-attached
(see also Fig. 7).

We will concentrate here on the add_binding function of the mod-
ule, which internally calls a smart make_node. Their signatures, as
implemented, are:

val add_binding :
int64 -> int64 -> int64 -> Int.t -> Int.t ->
V.t -> t -> int64 * t

(* [current_tree_offset] ->
[min] -> [max] -> [off] -> [modu] -> [value] ->
[tree] -> [new_current_tree_offset] * [current_tree]

*)

val make_node :
int64 -> Int.t -> Int.t -> t -> Int.t -> t ->
Int.t -> Int.t -> V.t -> int64 * t

(* [current_tree_offset] -> [max] ->
[offset_left_subtree] -> [left_subtree] ->
[offset_right_subtree] -> [right_subtree] ->
[off] -> [modu] -> [value] ->
[current_new_tree_offset] * [new_tree]

*)

Let us illustrate how the smart add_binding operates on the
rangemap shown in Fig. 6, which represents the following sequential
intervals: 0..19 → {11}, 20..30 → {12}, 31..65 → {11}, 66..80 →
{14}, 81..88 → {15}, 89..100 → {13} with respective ranks ∞ (by
convention), 3 (24 = 3 ∗ 23), 6 (64 = 26), 5 (80 = 5 ∗ 24), 3 (88 =
11 ∗ 23), 5 (96 = 3 ∗ 25). As an added hypothesis, we suppose all
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0..19→ {11}

Empty 0...34→ {11}

0..10→ {12}

−11

0..11→ {13}

0..14→ {14}

Empty 0..7→ {15}

+15

−24

Empty

+59

+31

Figure 6: Initial tree before addition of a binding

off and modu are given in such a way that the adjacent intervals of this
rangemap can be stitched together provided they hold the same value.

Suppose that we now want to add the following binding 31..65 →
{14} to this rangemap of Fig. 6. The operation can be decomposed as
follows (see also Fig. 7):

1) Find the correct spot according to rank (Def. 1) where the new
node should be;

2) See if it can be stitched together with some node of its subtrees;
3) Call make_node and rezip if needed, stitch if needed.
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31..65→ {14}

0..19→ {11}

Empty 0...34→ {11}

0..10→ {12}

−11

0..11→ {13}

0..14→ {14}

Empty 0..7→ {15}

+15

−24

Empty

+59

+31

0..19→ {11}

Empty 0...34→ {14}

0..10→ {12}

−11

0..11→ {13}

0..14→ {14}

Empty 0..7→ {15}

+15

−24

Empty

+59

+31

extend

rezip

0..19→ {11}

Empty 0...49(i.e. 34+14+1)→ {14}

0..10→ {12}

−11

0..11→ {13}

0..7→ {15}

−9(i.e. 15−24)

Empty

+59

+31

insert_node

ins
ert

ion
(st

ep
1)

stitching (step 2)

Figure 7: Inserting a node: stitching illustrated
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5.3. Merging rangemaps

From the get-go, we were aiming at a mergeable structure and our
module naturally contains a suitable function with the following imme-
diate signature:

val merge: int64 -> t -> int64 -> t -> int64 * t
(* [offset_t1] -> [t1] -> [offset_t2] -> [t2] ->

[current_new_tree_offset] * [new_tree]
*)

This function, apart from its primary importance, is not unnecessar-
ily complicated to implement. Actually, it makes extensive use of the
make_node function and of recursive calls to itself. A simplified ver-
sion can be informally stated as follows, assuming n1 and n2 are the
current nodes of the two trees t1 and t2 to be merged:

1) If In1 ∩ In2 = ∅:
Let nmax be the highest ranked node between n1 and n2 and nmin the
other one, and tmax and tmin the respective trees they belong to. Let
also subt+max be the subtree nmin should be included in: it is the left
subtree of tmax if max(nmin) < min(nmax), the right one otherwise.
Let subt−max be the other unchanged subtree of tmax .
Merge subt+max and tmin into a new tree t′.
Make a new tree from nmax, t′ and subt−max.

2) Otherwise, let I = In1 ∩ In2 and compute the value(s) it contains
according to the ones contained in In1 and In2 . Let I<

n1
, I>

n1
= In1\I .

These two new intervals represent the lower part of In1 not in I and the
upper part of In1 not in I . Let similarly I<

n2
, I>

n2
= In2\I .

Add I<
n1

to the left subtree of t1 and I>
n1

to the right subtree of t1. Do the
same for I<

n2
, I>

n2
and t2.

Merge both new left subtrees and merge both new right subtrees.
Make a new smart tree with I and the results of the previous recursive
calls.

Note that the values mapped to the intervals are not changed except
when the two trees have overlapping intervals.
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5.4. Caching

As noted in Sect. 4.4, the implemented functions often need to access
the rightmost and leftmost bindings of a subtree (i.e. those directly on
the right and left-hand side of the current node if the interval is looked
at linearly). This is right now naively done by recursively descending
the subtree. Another solution would consist in borrowing ideas from
monoid caching trees [7] and have fingers [6] pointing at the rightmost
left and leftmost right children.

However, this solution was not chosen. We chose to save the two
words necessary at each node to record the rightmost and leftmost bind-
ings. In our context, the space savings can more efficiently be used to
create caches for high-level operations, even if in the case of a cache
miss, the operation takes a little longer because of the logarithmic ac-
cess to these leftmost and rightmost bindings.

5.5. Sharing

The representation of relative subtrees described in Sect. 4.3 allows
maximal sharing on subtrees of the data structure: rangemaps are actu-
ally DAGs and not trees. The implemented version is on the right-hand
side of Fig. 8. Note that Empty subtrees are not drawn as shared al-
though they actually are: this is automatically done by OCaml and not
in the implementation of rangemaps.

The trees in Fig. 8 represent shared and unshared rangemaps for
the sequential interval: 0..19 → {11}, 20..29 → {12}, 30..49 →
{11}, 50..59 → {12}, 60..100 → {11} with respective ranks
∞, 3, 5, 3, 6.
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Unshared Shared

0..19→ {11}

Empty 0..40→ {11}

0..19→ {11}

0..9→ {12}

−10

0..9→ {12}

+20

−30

Empty

+60

0..19→ {11}

Empty 0..40→ {11}

0..19→ {11}

0..9→ {12}

−30

Empty

+60

+20−10

Figure 8: Unshared vs. shared version of the same tree

6. Conclusion and further work

In this article, we have introduced rangemaps, a data structure to rep-
resent persistent maps indexed by intervals. We have shown the unique
properties of rangemaps and highlighted details of the current prototype
implementation.

The next step is to replace the existing ad-hoc data structure for rep-
resenting char arrays in Frama-C’s value analysis1 by rangemaps. We
expect this will increase the efficiency of the value analysis both in
terms of memory used and speed. We are looking forward to the pos-
sibility to run benchmarks comparing the current ad-hoc representation
and the representation based on rangemaps.
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