
Enforcing Type-Safe Linking using
Inter-Package Relationships

M. Dogguy* — S. Glondu* — S. Le Gall** — S. Zacchiroli* 1

* Laboratoire PPS, UMR 7126
Université Paris Diderot-Paris 7

Case 7014
F-75205 Paris Cedex 13

{dogguy,glondu,zack}@pps.jussieu.fr

** OCamlCore S.A.R.L.

sylvain.le-gall@ocamlcore.com

ABSTRACT. Strongly-typed languages rely onlink-time checksto ensure that type safety is not

violated at the borders of compilation units. Such checks entail very fine-graineddependencies

among compilation units, which are at odds with the implicitassumption ofbackward compat-

ibility that is relied upon by common library packaging techniques adopted by FOSS (Free and

Open Source Software) package-based distributions. As a consequence, package managers are

often unable to prevent users to install a set of libraries which cannot be linked together. We

discuss how to guarantee link-time compatibility using inter-package relationships; in doing so,

we take into account real-life maintainability problems such as support for automatic package

rebuild and manageability of ABI (Application Binary Interface) strings by humans. We present

thedh_ocaml implementation of the proposed solution, which is currently in use in the Debian

distribution to safely deploy more than 300 OCaml-related packages.

RÉSUMÉ. Les langages fortement typés reposent sur des vérificationslors de l’édition de liens

afin de garantir que la sûreté du typage reste respectée entredifférentes unités de compila-

tion. Ces vérifications sont très strictes, et incompatibles avec l’usage dans les distributions de

logiciels libres utilisant des paquets qui est de supposer que les bibliothèques sont rétrocom-

patibles. Ainsi, les gestionnaires de paquets sont souventincapables d’empêcher un utilisateur

1. Partially supported by the European Community FP7, MANCOOSI project, grant agreement
n. 214898

d’installer un ensemble incohérent de bibliothèques. Nousétudions ici diverses approches à ce

problème, et la solution que nous proposons, qui a été adoptée par Debian avec succès pour

plus de 300 paquets.

KEYWORDS: static typing, separate compilation, linking, free software, FOSS, distribution,

package, dependency, OCaml, Debian

MOTS-CLÉS : typage statique, compilation séparée, édition de liens, logiciel libre, FOSS,
distribution, paquet, dépendance, OCaml, Debian

1. Introduction

Type safety is a tricky business, even more so when separate com-
pilation is desired. In the world of system-level languagesand link-
ers [12]—such as the C language and the widespread GNU linker—very
few checks are performed at the final linking stage; a bit of formaliza-
tion will help in understanding them. Given a set ofcompilation units
{u1, . . . , un} to be linked together the linker checks, in essence, a form
of referential integrity, i.e. that all symbols needed by involved compi-
lation units are actually available within the set. We callrequirements
of a compilation unitR(u) the set of required symbols andapplication
binary interface(ABI) of a compilation unitA(u) the set of provided
symbols. The linker notion of “linkability” can hence be grasped as
follows:1

Definition 1 (Linkability). link{u1, . . . , un} = ✓ iff:

1)
⋃

i R(ui) ⊆
⋃

i A(ui)

2) ∀i j, i 6= j → A(ui) ∩ A(uj) = ∅

where the second condition avoids multiple definitions.2 No matter the
type system expressivity, it is obvious that such a linking discipline can-
not help in enforcing type safetyacross compilation units, if not relying

1. We do not strive for completeness here, we grasp only the linker checks that will help in
comparing with the strongly typed language world. For the same reason, we do not distinguish
between static and dynamic linking.
2. Actually, in some corner cases, the linker can allow them, but that is uninteresting for our
purposes.

2

Listing 1: foo.ml
l e t hello () =

Printf.printf

"Hi!\n"

Listing 2: bar.ml
l e t hello () =

Foo.hello ()

Listing 3: main.ml
l e t _ =

Bar.hello ()

Figure 1: sample OCaml compilation units

on name mangling hacks [13], or delegating it to external whole pro-
gram verification [7].

Moving to the world of functional, statically typed programming
languages, such as OCaml or Haskell, link-time checks get more thor-
ough mainly because types come into play. Not only cross-module type
compatibility is challenging to verifyper se[1, 10], but also technical
guarantees that ABIs do not change between compile time of individual
units and link time are requested to be type-aware. The solution adopted
by OCaml is, for each compilation unit, to expose two sets ofmodule
names, associating each name to a cryptographic hash orchecksumthat
grasps the type information of that module.

Example 1. Let’s consider the sources of Figure 1. After (bytecode)
compilation ofbar.ml—which in turn needs a compiled version of
foo.ml—the resulting compilation unit contains the following “as-
sumptions”:

$ ocamlc -c foo.ml bar.ml

$ ocamlobjinfo bar.cmo

Unit name: Bar

Interfaces imported :

807 ecd3a1538992580464c03462c9964 Printf

da00042bb934260afe41d004bc91fe2e Foo

9e3404342379641955461e6944482508 Bar

where we can see thatbar.cmo exports an ABI consisting of the inter-
faceBar with a specific MD5 checksum, and that itrequiressome other
checksum-tagged interfaces. Among them we can spotFoo, provided by
foo.ml, andPrintf, provided by the OCaml standard library which is
linked in by default. If the ABI offoo.cmo changes between the compile

3

time ofbar.cmo and the final link time, the user will incur in the sadly
well-known “inconsistent assumptions” error:

$ ocamlc -c foo.ml bar.ml

$ echo "let gotcha () = ()" >> foo.ml

$ ocamlc -c foo.ml

$ ocamlc foo.cmo bar.cmo main.ml

Files bar.cmo and foo.cmo make inconsistent

assumptions over interface Foo

In our simple formalization, the additional checks performed by OCaml
already fit, by simply considering bothR(u) andA(u) to be sets of
pairs〈m, c〉, wherem is the name of an OCaml module andc is its asso-
ciated checksum. The only additional property checked by the OCaml
linker is that, given a set of compilation units, the mappingbetween
module names and checksums is a function, i.e. that a module is not
associated with different checksums. Simplifying the characteristics of
the standard librarystdlib, the failure of Example 1 can now be ex-
plained as follow, where the final equation was supposed to equate the
empty set in order to satisfy Definition 1.

R(stdlib) = ∅
R(foo.cmo) = {〈Printf, 807ec . . .〉}
R(bar.cmo) = {〈Printf, 807ec . . .〉,

〈Foo, da000 . . .〉 }
A(stdlib) = {〈Printf, 807ec . . .〉}

A(foo.cmo) = {〈Foo, a4293 . . .〉}
A(bar.cmo) = {〈Bar, 9e340 . . .〉}

⋃
u∈M R(u) \

⋃
u∈M A(u) = {〈Foo, da000 . . .〉}

(whereM = {stdlib, foo.cmo, bar.cmo})

The ability of the linker to detect this kind of unsound assump-
tions comes at a cost: ABI changes more frequently than in theC
case. Indeed, with system-level linking, the ABI of a given unit can
inhibit linkability only by removing symbols from it. Backward ABI
compatibility—which of course does not imply type safety—can be re-
tained by simply adding new symbols, which is unsurprisingly common

4

practice in the work-flow of C libraries. With type-aware linking, ABIs
break at each change in a module,3 no matter if it is an addition or a re-
moval, because each such modification will change the checksum of the
module. While C libraries offer (type-unsafe) backward binary compat-
ibility by default, OCaml libraries have the converse default: they break
binary compatibility at each change.

Unfortunately for most users of languages such as OCaml and
Haskell, packaging systems and techniques used in mainstream FOSS
(Free and Open Source Software) distributions have been designed with
implicit backward compatibilityamong libraries in mind. Dependencies
on library packages are usually expressed in forms like the following:

Package: my-app

Depends: libfoo1 (>= 1.2.3)

where it is implicitly assumed that future versions of thefoo library
will either be backward binary compatible, or change the package name
tout court, for instance switching tolibfoo2.

The advantage of the backward compatibility assumption is that
inconsistent software installations, where installed libraries lack the
needed objects to be linkable, are detected at the dependency level and
can hence be spotted by package managers. Given that there isno re-
liable mapping between library versions and ABIs (new versionscan
change ABIs, but are not forced to), we observe that with the OCaml
linking discipline the advantage of spotting linkability errors at the de-
pendency level is gone. As most OCaml users on distributionssuch as
Debian4 have experienced, it indeed frequently happens that upgrades
involving OCaml libraries temporarily leave the build toolchain in an
inconsistent state,5 requiring users to: recompile dependent libraries
by hand, rollback the upgrade (if possible), or simply wait for fixed
packages (of all involved libraries) from the distribution.

3. Here, we do not distinguish among assumptions on interfaces and assumptions on implemen-
tations, these details are postponed to Section 5.
4. http://www.debian.org
5. For example, http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=238727 (re-
trieved October 2009); similar reports are very frequent during transitions to one OCaml version
to the next one, since all libraries need to be rebuilt.

5

In this paper we show how to make the packaging system aware
of complex and frequently changing ABIs used by languages such as
OCaml and Haskell, hence shielding users from the installation of non-
linkable libraries. Attempting to do so will equate to trying to install a
package whose dependencies cannot be satisfied. We achieve that result
by coalescing ABIs in a single, human-readable, checksum—calledABI
approximation—which is then reified as a “virtual” package known to
the packaging system, de facto closing the gap between coarse-grained
inter-package relationships and fine-grained inter-unit linking assump-
tions.

1.1. Paper structure.

The next section introduces some concepts of the FOSS distribution
context that will be needed throughout the paper. Section 3 poses the re-
quirements for the solution we look for, solution which is then described
and analyzed in Section 4; its actual implementation—in thecontext of
the Debian distribution and for the OCaml language—is discussed in
Section 5. From now on, we will focus on the OCaml language and
its packaging in Debian, but reasoning and choices are general enough
to be ported to similar languages (with strong typing and inspectable
linking assumptions) and distributions (based on binary packages).

2. Packaging basics

2.1. Packages

In most FOSS distributions—and, more generally, in component-
based systems [14]—software components are managed asbinary pack-
ages[2] which define the granularity at which users can add or remove
software. A binary package is essentially a bundle of data (executables,
documentation, media, etc.) to be deployed on the file system. Ad-
ditionally, binary packages are described by meta-information which
include complexinter-package relationshipsthat describe the static re-
quirements to run properly on a target system. Requirementsare ex-
pressed in terms of other binary packages, possibly with restrictions on
the desired versions. Both positive requirements (dependencies) and

6

negative requirements (conflicts) are supported by most packaging sys-
tems.

Example 2. An excerpt of the meta-data of theocamlnet library in
Debian currently reads:

1 Package: libocamlnet -ocaml -dev

2 Vers ion : 2.2.9 -3

3 Depends: ocaml -nox -3.10.2 , ocaml -findlib ,

4 libocamlnet -ocaml (= 2.2.9-3),

5 libpcre -ocaml -dev (>= 5.11.1) ,

6 libcryptgps -ocaml -dev (>= 0.2.1)

7 P r ov i d e s: libequeue -ocaml -dev ,

8 libnetclient -ocaml -dev ,

9 librpc -ocaml -dev

10 C o n f l i c t s : libequeue -ocaml -dev (<< 2.2.3-1),

11 libnetclient -ocaml -dev (<< 2.2.3-1),

12 librpc -ocaml -dev (<< 2.2.3 -1)

13 D e s c r i p t i o n : OCaml application -level Internet

14 libraries - core libraries

In this short but representative example we can recognize the distin-
guishing features of inter-package relationships [6]:

– dependencies over other libraries, tools, and the OCaml interpreter
(line 3) which can be both versioned (e.g.libocamlnet-ocaml—
the runtime part of the package shown) or non-versioned
(e.g.ocaml-findlib);

– conflicts with some libraries (line 10), in this case with superseded
packages now included intolibocamlnet-ocaml-dev itself;

– virtual packages(line 7), i.e. the ability to declarefeaturespro-
vided by the owning “real” package so that others can depend on (or
conflict with) feature names. In this caselibocamlnet-ocaml-dev
provides old library names such aslibequeue-ocaml-dev; de-
pendencies on it by other packages can be satisfied by installing
libocamlnet-ocaml-dev. The other typical use case of vir-
tual packages is to add an indirection layer about system services
(e.g. mail-transport-agent) between packages providing the ser-
vice (e.g.postfix or exim4) and packages needing it (e.g.cron).

7

Figure 2: package (auto-)building in Debian.

2.2. Auto-building and binNMUs

Source packagesare a different type of packages that contain the
source code. Compiling them produces binary packages.6 Source pack-
ages are usually manipulated by packagemaintainersworking for spe-
cific distributions. The mapping between source and binary packages
is one to many; for instance, theocamlnet source package produces
the package shown in Example 2 together with eight other binary pack-
ages. Also, there exists a relation ofbuild-dependencybetween a source
package and all binary packages which are needed to build it.

The natural work-flow of packages is rather complex [8], the part
that mostly concerns us is sketched in Figure 2. Maintainersupload
source packages to a package queue, together with the corresponding
binary packages; considered as a whole, such an upload is said to be a
sourceful upload. Given that maintainers usually own only a machine
for a single architecture,auto-builders(or buildd) pick up the uploaded
source package and rebuild the corresponding binary packages for each
architecture supported by the distribution (about a dozen,in the case
of Debian). The only exception to this scheme arearchitecture inde-
pendentpackages (orarch:all) that once built on any given architec-
ture, can then be installed on all architectures (e.g. because they contain
portable interpreted code or bytecode); hence,arch:all packages do

6. According to folklore, we use “packages” to refer to binarypackages, and explicitly “source
packages” for the others.

8

not get rebuilt at all. All obtained binary packages flow to the “unstable”
suitewhich is ready to be used by developers and testers in preparation
of the future stable release.

In specific occasions (library transitions, etc.), binary packages can
be rebuilt without intervention on their source packages. This might be
needed to fix builds performed in malformed environments (e.g. buggy
compiler) or to ensure a package still builds against a new version of a
library it depends upon. To that end, maintainers can trigger rebuilds
by requesting abinNMU (a historic and unfortunate name standing for
“binary Non-Maintainer Upload”). For our needs, the important aspect
of binNMUs is that they do not allow to perform any changes to the
source package.

2.3. Dependency inference

But how can a binary package change if its source package remains
unchanged? The contents of the package (e.g. binary files) can of course
change as the toolchain used to build changes (compiler, libraries, etc.),
but it turns out that also package meta-information such as dependen-
cies can change across rebuilds (and hence differ across architectures).
In fact, maintainers can exploit a mechanism ofdependency inference
to ease the tedious task of maintaining dependency information. For in-
stance, the dependency information of themldonkey-server package
read as follows in the correspondingsourcepackage:

Package: mldonkey -server

Depends: adduser , mime -support , ucf ,

${shlibs:Depends}, ${misc:Depends}

whereas in the resulting binary package they read:

Package: mldonkey -server

Depends: adduser , mime -support , ucf , libbz2 -1.0,

libc6 (>= 2.3.2) , libjpeg62 ,

libfreetype6 (>= 2.2.1) , libgcc1 (>= 1:4.1.1),

zlib1g (>= 1:1.1.4),

libgd2 -noxpm (>= 2.0.36~ rc1~dfsg) |

libgd2 -xpm (>= 2.0.36~ rc1~dfsg),

libpng12 -0 (>= 1.2.13-4), libstdc ++6 (>= 4.2.1) ,

debconf | debconf -2.0

9

What is going on is that variables—expressed in${this:form}—
get expanded during build according to dependency inference. While
maintainers can use custom expansion mechanisms, the common
way to expand variables is to rely upon specificregistries. For
instance, the${shlibs:Depends} variable expands to all depen-
dencies that can be inferred by C shared library relationships [3].
To that end, each C shared library installed on the system pro-
vides a shlibs file which is in essence a record of tuples
〈libraryname, packagename, versionpredicate〉 which contributes to
the C shared library registry. For instance, thelibpng12-0 package
provides a record〈libpng12, libpng12-0, (>= 1.2.13-4)〉. When
the mldonkey-server package gets built, all executables it ships are
inspected for relationships with C shared libraries (usingtools like
objdump). Since the/usr/bin/mldonkey-server executable needs a
C library calledlibpng12 to be loaded, a lookup for that library name
in the registry provides the matching dependencylibpng12-0 (>=

1.2.13-4) which is added to the expansion of${shlibs:Depends}.

3. Requirements

The goal of the solution we are looking for is to detect type-aware
linking incompatibilities at the dependency level. As there are several
possible solutions to that problem, we define in this sectiona set of
contingent requirements, mostly inherited from the context. The first
obvious requirement is goal fulfillment.

Requirement 1 (Dependency soundness). All binary packages ship-
ping compilation units should satisfy thedependency soundnessprop-
erty.

Property 1 (Dependency soundness). 7 A packagep shipping OCaml
compilation units{u1, . . . , un} hassound dependencieswith respect to
a repositoryR if and only if for all healthy installationI ∋ p, it holds
that link({u | ∃q ∈ R|{p} q ∈ I andq shipsu}) = ✓

7. The notions ofhealthy installationandgenerated subrepository, notedR|Π, are easily ex-
plainable: an installation is a set of installed packages, it is healthy if all dependencies are

10

Intuitively, a package has sound dependencies if all compilation units
shipped by its (transitive) dependencies can be linked together. De-
pendency soundness is clearly not a local property—i.e. it cannot be
decided by considering a package in isolation—but this is not surpris-
ing given that our notion of linking is geared towards obtaining a self-
contained executable.

Requirement 2(Dependency inference). Given a source packages and
its build-dependenciesB = {p1, . . . , pn}, the dependencies that ensure
soundness on all binary packages obtained by buildings, should be
inferrableon the basis ofB and its (transitive) dependencies.

Acknowledging that OCaml ABIs change very frequently, Require-
ment 2 asks for a mechanism of dependency inference (see Section 2)
that relieves maintainers from the error-prone task of maintaining by
hand the needed dependencies.

Requirement 3(binNMU-safety). If a packagep has sound dependen-
cies, performing a binNMU on it should not make its dependencies un-
sound.

This requirement not only means that inferred dependenciesshould
not be tied to source package version, but also that we cannotrely on
sourceful uploads. Hence, solutions requiring changes to be incorpo-
rated in source packages at each upload are not suitable for the task. All
dependencies ensuring soundness should be recomputed during build,
on the basis of the build environment. While binNMU-safety mim-
ics the homonymous accepted best-practice of packaging, itis also a
real need to reduce maintenance burden. Since transitions from one
compiler version to the next require rebuilding all packages, and given
that distributions like Debian contain nowadays more than ahundred
OCaml-related source packages, the ability to do transitions via binN-
MUs is crucial for the maintainability of the whole stack in package-
based binary distributions.

satisfied and no conflicts occur among installed packages; a generated subrepository is a repos-
itory subset obtained as the closure of the “depends on” relation starting from a given set of
packages. Formal details can be found in [11].

11

Package: libfoo -ocaml -dev

Vers ion : 1

Package: libbar -ocaml -dev

Vers ion : 1

Depends: libfoo -ocaml -dev (>= 1)

Bui ld -Depends: libfoo -ocaml -dev (>= 1)

Package: main

Vers ion : 1

Bui ld -Depends: libbar -ocaml -dev (>= 1)

Figure 3: Past Debian dependency scheme for OCaml-related packages

Requirement 4 (Light dependencies). All inter-package relationships
needed to ensure dependency soundness should be terse, readable,
human-manageable.

Albeit admittedly very informal, this requirement is meantto en-
sure that package dependencies remain manageable by humans. Even
if there is no clear definition for that, discussions within the Debian
project between OCaml maintainers and both the release team8 and
users has given evidence that solutions like a simple dump ofall MD5
requirements as dependencies would not be acceptable. Indeed, during
release management, quality assurance, or simply broken dependency
analysis within a package manager, such dependencies will be too many
(one for each ABI requirement) and too unfriendly. Requirement 4 at-
tempts to grasp this and similar desiderata.

3.1. Related work

Until the adoption of the solution presented in this paper, the Debian
distribution were using the natural dependency scheme [9] depicted in
Figure 3, where the snippets of Figure 1 are considered shipped by pack-
ages with matching names. The drawbacks of that solution aretwofold:

8. The release team is a group of Debian developers who coordinate transitions, goals and
deadline for the next stable release.

12

$ rpm -qRp ocaml -ocamlnet *.rpm

ocaml(Arg) = b6513be035dc9c8a458c189cd8841700

ocaml(Array) = 9c9fa5f11e2d6992c427dde4d1168489

ocaml(Bigarray) = fc2b6c88ffd318b9f111abe46ba99902

ocaml(Buffer) = 23 af67395823b652b807c4ae0b581211

... snipped 67 moreocaml(*) deps

$ rpm --provides -qp ocaml -ocamlnet *.rpm

ocaml(Equeue) = 329 e036bb2778b249d6763d22407af19

ocaml(Ftp_client) =

d36822b105eacef219a2b6e0331ba34b

ocaml(Ftp_data_endpoint) =

f279805dc3b7ced5d8554f92e287c889

ocaml(Generate) = 418 dedddda65b04bdc4d0c6e9fb918d4

... snipped 110 moreocaml(*) virtual packages

Figure 4: Sample dependencies (on the left) and provided features (on
the right) according to the Fedora solution, for theocamlnet library.

no dependency inference (the maintainer writes dependencies by hand),
no dependency soundness (there is no guarantee that future versions will
preserve ABI compatibility). Note that stricter version predicates, such
as e.g.libfoo-ocaml-dev (>= 1), libfoo-ocaml-dev (<< 2), (as it
is currently done for Haskell packages in Debian) will not provide
soundness either because version numbers are densely ordered. In 2005,
a helper tool calleddh_ocaml was proposed [15] to ease the burden of
maintaining OCaml-related dependencies,9 mimicking the architecture
of theshlibs registry for C shared libraries. Dependencies generated
by (old-style)dh_ocaml follow the scheme of Figure 3. The obtained
solution hence also fulfills Requirement 2, but not yet Requirement 1
(arguably the most important one).

The Fedora and Red Hat distributions, and after them other RPM-
based distributions such as OpenSUSE and Mandriva, adopt a differ-
ent solution [4]. At the end of build, they automatically inspect all

9. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=328422, retrieved October
2009

13

OCaml bytecode objectsui shipped by each binary package and, for
each pair〈m, c〉 ∈ R(ui), they add a dependency on a virtual pack-
age in the OCaml namespace which has the full MD5 checksum as
its version; pairs inA(ui) are similarly handled to generate the list of
provided virtual packages. No intermediate registry is used. Fedora’s
solution provides soundness (up to a technical detail discussed in Sec-
tion 5) and implicit dependency inference, however it failslightness: as
it can be seen in Figure 4, it bloats package lists with one virtual pack-
age/dependency per exported/required OCaml module (whichcan have
a performance hit on dependency resolution, in distributions the size of
Debian). Also, it will expose users and other team members toboth
human-meaningless and very long checksums.

The last alternative solution we are aware of isABI evolution
tracking [15]: it establishes an injective mapping between pack-
age ABIs and integers. The integer ideally represents ABI “ver-
sion” and is used to establish human-friendly virtual package names
(e.g.libpcre-ocaml-dev-1) that provide soundness. Unfortunately,
this solution defeats binNMU-safety. Indeed, to avoid ABI version
clashes the mapping should be either maintained by hand (similarly to
what happens with C symbols tracking, where unexpected changes at
build time trigger build failures), or obtained via automatic monotonic
increase of ABI versions. For the latter, we would need to preserve
somewhere a history of past ABI numbers, which has no place tostay
during binNMUs: network is not accessible to avoid non-deterministic
builds and source packages cannot be changed.

Table 1 reviews the discussed solutions against our requirements.
The last line is the solution we propose, described in next section.

4. ABI approximation

To overcome the limitations of the discussed approaches, wehave
devised a solution based on the idea of computing a single approxima-
tion of the ABIs of all compilation units shipped by a given package. We
call such solutionABI approximationand its architecture is sketched in
Figure 5. Consider a (binary) packagepkg shipping compilation units
u1, . . . , un (at the top-left of Figure 5). Its ABI approximation—noted

14

Table 1: Review of linkability enforcement solutions
Req. 1 Req. 2 Req. 3 Req. 4

Solution soundness inference binNMU lightness
past Debian
status quo

✗ ✗ ✓ ✓

+
old-style
dh_ocaml

✗ ✓ ✓ ✓

current Fedora
guidelines

✓ ✓ ✓ ✗

ABI evolution
tracking

✓ ✓ ✗ ✓

ABI
approximation

✓ ✓ ✓ ✓

Ã(pkg)—is obtained as a cryptographic hash of all ABI pairs of all
compilation units; intuitively:Ã(pkg) = hash(A(u1) ◦ · · · ◦ A(un)),
where◦ is a concatenation operator which is used to incrementally adds
material on which the hash is taken.10

The obtained ABI approximation is then used in two differentways,
both eventually contributing to form the inter-package relationships of
pkg. For what concerns the interface exposed bypkg, we directly
add a virtual package obtained by juxtaposingpkg’s name with the
ABI approximation itself. All packages relying on the set ofABIs
A(u1), . . . ,A(un) will depend on that virtual package.

Let’s now assume that all dependencies ofpkg itself already have
computed ABI approximations and that they are available at build-time
(a sound assumption according to our linking discipline). To ensure that
we can compute the dependencies on the correct virtual packages—
i.e. the virtual packages corresponding to packages able tosatisfy the
linking assumptionsR(u1), . . . ,R(un)—we use anABI registry that
stores information about which packages provide which ABI.The reg-
istry is populated by tuples (simplified in Figure 5)〈m, c, pkg, Ã(pkg)〉

10. A more formal description would require more details on thehashing function, on module
naming conventions, etc. They are omitted from here for the sake of conciseness, but Section 5
provides some related details about the current implementation.

15

Figure 5: ABI approximation: architecture

where〈m, c〉 ∈ A(u) for someu shipped bypkg. Intuitively, each mod-
ule m exposed by some compilation unit with checksumc has a tuple
in the registry which relates it with a specific package name and overall
ABI approximation. Technically, the tuples are computed atbuild-time
and the registry is constructed incrementally by files shipped by pkg
itself.

Using the registry, we can now compute the dependency entries of
pkg which will ensure its linkability. For each〈m, c〉 ∈ R(ui), we
look up 〈m, c〉 (which is expected to be a primary key in any possible
configuration) in the registry to get a pair of package name and ABI
approximation. By juxtaposing them as before, we can now emit the
appropriate dependency snippets.

Example 3. The resulting dependencies for theocamlnet package,
which we have already seenbeforeABI approximation in Example 2,
is as follows.

Package: libocamlnet -ocaml -dev

Vers ion : 2.2.9 -7

Depends: ocaml -findlib ,

libcryptgps -ocaml -dev -139d7,

libocamlnet -ocaml -3rxe6 ,

libpcre -ocaml -dev -kh2c0 ,

ocaml -nox -3.11.1

P r ov i d e s: libequeue -ocaml -dev ,

libnetclient -ocaml -dev ,

16

librpc -ocaml -dev ,

libocamlnet -ocaml -dev -3rxe6

D e s c r i p t i o n : OCaml application -level Internet

libraries - core libraries

We can notice that the package depends on the externalcryptgps and
pcre library with specific ABI approximations, and that it exports an
ABI approximation itself. By comparison with the Fedora dependencies
for the same package (see Figure 4), we observe that the huge amount of
provided and expected module checksums is here hidden in theregistry
and resolved at build time; the package interface exposes a single extra
virtual package, and one dependency for each external library needed.

To review ABI approximation against the requirements of Section 3,
we start by observing that soundness is granted up to the riskof clashes
of different sets of ABIs to the same approximated ABI. Literature
about so-called “birthday paradox” gives an approximationon the num-
ber of different, incompatible, versions of a library to have collision
with probabilityp:

n(p; H) ≈

√
2H ln

1

1 − p

were H denotes the ABI approximation space size. In our practical
implementationH = 365 (see next section), so we reach the negligible
probability of 1 % of collision with 1103 versions.

Dependency inference is trivially provided by the ABI registry, ac-
cording to the lookup mechanism described above. binNMU-safety is
granted too as all the state needed to compute both the inferred depen-
dencies and the exposed approximated ABI is not stored in thesource
package (and hence does not need sourceful uploads to be changed);
rather, the state is kept in the registry which is contributed to by build-
dependencies of the package being built. Finally, arguablydependency
lightness is provided too. While ABI approximated strings are not nec-
essarily human-meaningful, they have the benefit of being short (only
5 alphanumeric characters in the current implementation).Also, the
number of such strings that are needed for a given binary package is
bounded: one for the exported interface and one for each package de-
pendency, with the latter set replacing dependencies whichwould have

17

been needed anyhow, just replacing ABI approximations withversion
numbers.

The most notable limitation of ABI approximation is the “instability”
of approximations with respect to backwardcompatiblechanges. This
is not surprising, given that the solution has been designedprecisely to
cope with frequent backwardincompatible changes. Still, sometimes,
backward compatible changes can happen in a given package, for ex-
ample by adding a new module to a given library without touching any
other existing module. In our formalism that translates to adding a new
couple〈mnew, cnew〉 to someA(ui); trivially, property 1 is unaffected
by such addition. Nevertheless, the resulting ABI approximation will
change, since the content on which the hash is computed will change.
Practically, the problem is non-existent, given the low frequency of such
changes and given that—thanks to binNMU-safety—the affected pack-
ages can be fixed by just scheduling their recompilation. Also, we ob-
serve that this issue can be fixed only by allowing to export ABI approx-
imations whose sizes are linear with respect to the number ofmodules
shipped by a given package; in essence, that would mean mimicking
Fedora’s solution, getting back its disadvantages.

5. Implementation

ABI approximation has been implemented in the context of theDe-
bian distribution to manage the inter-package dependencies of all pro-
vided OCaml-related packages. At the time of writing, that amounts
to 158 source packages that build-depend on OCaml, producing 353
binary packages, and providing interfaces for 2 502 OCaml modules.
Technically, the implementation is based ondh_ocaml, a helper tool
meant to be compatible with the Debhelper packaging helper suite [5].
Some of its inner workings depends on how OCaml libraries aresplit
into binary packages, which we briefly highlight below.

Compiling a source package results in one or several binary pack-
ages. For example, library source packages usually produce(at least)
two binary packages:

18

1) aruntimepackage, containing all the objects that might be needed
at runtime by software linked to the library;

2) a developmentpackage, containing all the objects that might be
needed to compile software that uses the library.

In the OCaml world, the runtime package typically contains stubs to C
libraries (the so called “bindings”) that are dynamically loaded when
running pure bytecode executables (.so), and the development package
contains interfaces in source (.mli or .ml) and compiled (.cmi) form,
along with compiled module objects (.cmo, .cma, .cmx, .o, .cmxa,
.a), META files and (mostlyocamldoc-generated) documentation. A
library might have no runtime package at all if it is meant to be always
statically linked, which happens quite often with pure-OCaml libraries.
However, when a library can be dynamically loaded by a program that
supports plugins, the runtime package can also provide.cma, .cmxs,
andMETA files.

A library can be further split into several components. Thisis usually
left at the package maintainer discretion, and choices can vary between
distributions. A typical reason for splitting a library is optional depen-
dencies that might be needed only by some compilation units.Each
resulting component might then have its runtime and development pack-
ages. Finally, there are also non-library packages shipping OCaml bi-
naries. Overall,dh_ocaml distinguishes three classes of (binary) pack-
ages: runtime, development, and others. We henceforth consider as
a library a development package together with its runtime package, if
any. For example, theocamlnet source package produces the following
binary packages:

– libocamlnet-ocaml: core library (runtime);

– libocamlnet-ocaml-dev: core library (development);

– libocamlnet-ocaml-doc: documentation;

– libocamlnet-ocaml-bin: miscellaneous tools;

– libocamlnet-gtk2-ocaml-dev: GTK2 layer (development);

– libocamlnet-ssl-ocaml: SSL layer (runtime);

– libocamlnet-ssl-ocaml-dev: SSL layer (development);

19

– libnethttpd-ocaml-dev: HTTP daemon libraries (develop-
ment);

– libapache2-mod-ocamlnet: Apache2 module.

Among them, four OCaml libraries can be recognized:

– libocamlnet-ocaml/-dev,

– libocamlnet-gtk2-ocaml-dev (without runtime),

– libocamlnet-ssl-ocaml/-dev, and

– libnethttpd-ocaml-dev (without runtime).

To inspect OCaml compilation units (a required ability to implement
ABI approximation), the OCaml standard distribution provides some
useful tools:

ocamlobjinfo reads assumptions of bytecode objects (.cmi, .cmo

and.cma files), as shown in Example 1;

ocamldumpapprox reads assumptions of native code objects (.cmx,
.cmxa files).

While OCaml bytecode objects make assumptions only on inter-
faces, native code objects may also make assumptions on implementa-
tions, e.g. due to inlining across compilation units. Theseassumptions
are stored in.cmx files, which might hence be useful even if the mod-
ule they represent are included in a.cmxa file. Most notably, the above
tools lack the ability to inspect bytecode executables and native plugins
(.cmxs). Such abilities are much needed: bytecode executables might
depend on external C stubs, and a native plugin is a special case of li-
brary and should be considered as such. To overcome these limitations,
we have implementedocamlbyteinfo and ocamlplugininfo; they
are currently shipped as part of theocaml source package and relied
upon bydh_ocaml.

The solution described in section 4 is then implemented in Debian
using two tools:

ocaml-md5sums manages the ABI registry. This tool is meant to be
generic (not Debian-specific). It inspects a set of object files by

20

calling the most appropriate among the above tools, uses their
output to compute their dependencies and its approximated ABI.
It considers a library as a whole (runtime and development to-
gether);

dh_ocaml is a frontend toocaml-md5sums; it looks for installed ob-
jects and binaries, passes them toocaml-md5sums and fills-
in substitution variables corresponding to dependency inference
variables; it distinguishes between the three categories of pack-
ages:

– development packages depend on their own runtime package
(that explains the dependency onlibocamlnet-ocaml-3rxe6
that the attentive reader might have noticed in Example 3), and
possibly on other development packages;

– runtime and other packages depend only on other runtime
packages.

The actual ABI approximation is computed by considering theunion
of two different sets ofA(·) for each compilation unit: one for as-
sumptions over interfaces, one for assumptions over implementations
(no matter where they come from: plugin, object, or binary).On a
simple textual representation of the resulting set, a MD5 checksum is
computed and then taken modulo a fixed hash space. Currently,such
hash space relies on 5 alphanumeric, lowercase, plain-ASCII charac-
ters, accounting for(26 letters + 10 digits)5 ≈ 60 · 106 different ABI
approximations. As discussed in the previous section, thatchoice gives
a negligible clash probability, without sacrificing lightness.

We notice that alternative solutions, such as Fedora’s, arecurrently
not considering assumption on implementations (most likely because
the original tools in the OCaml distributions were not able to inspect
them). As a consequence they only provide soundness up to imple-
mentation incompatibility, which is usually more likely tooccur than
interface incompatibility. This being a minor drawback easily fixable
(now that we have provided the missing tools), we also observe that
fixing it naively would mean doubling the already large number of de-
pends/provides of Figure 4.

21

Example 4. Here is an excerpt of dependencies from theocamlnet

sourcepackage (i.e. before expansion bydh_ocaml):

Package: libocamlnet -ocaml -dev

P r ov i d e s: libequeue -ocaml -dev ,

libnetclient -ocaml -dev ,

librpc -ocaml -dev ,

${ocaml:P r ov i d e s}
Depends: ocaml -findlib , ${ocaml:Depends},
${shlibs:Depends}, ${misc:Depends}

The result of the substitution performed bydh_ocaml in the correspond-
ing binary package can be seen in Example 3.

Both ocaml-md5sums and dh_ocaml are implemented in Perl to
avoid (build-)dependency cycles among the package shipping them and
theocaml package itself. Both tools are part of thedh-ocaml source
package, which is distributed under the terms of the GNU General Pub-
lic License (version 3) and available from its Git repository.11

So far, we have effectively deployed this solution in about 50 source
packages (out of 100 library packages). This deployment revealed not
only past packaging errors such as missing dependencies, but also un-
related errors like libraries re-exporting modules they donot own. The
most common example of that has been the embedding of theUnix

module into third-party libraries. The remaining packages, and most
notably libraries, are being ported todh_ocaml at the time of writing,
their ported versions are all expected to be shipped with thenext stable
release of Debian (codename “Squeeze”).

The only currently knowndh_ocaml-specific limitations are as fol-
lows:

– it is theoretically possible to change C stubs in a binary incompat-
ible way while keeping the same interface; it is therefore possible to
install an outdated version of C stubs while satisfying all dependencies
of a bytecode executable. This limitation is inherent to OCaml;

– architecture-independent packages that depend on libraries with
runtime cannot currently benefit from this solution, because the ABI

11. http://git.debian.org/?p=pkg-ocaml-maint/packages/dh-ocaml.git

22

approximation string depends on the architecture (given assumptions on
implementations are not present on architectures lacking theocamlopt
native code compiler). This limitation can be solved by computing two
separate ABIs: a native code and a bytecode one; the latter should be
the same on all architectures.

6. Conclusions and future work

In this paper we have given some insights on the gap existing be-
tween fine-grained dependencies that type-aware linkers consider to en-
force type-safety at compilation units borders, and the coarse-grained
dependencies that can be expressed among packages in FOSS binary
distributions. That gap persisting, package managers willnot be able
to defend users from installing OCaml libraries that can notbe linked
together due to annoying “inconsistent assumptions” link-time er-
rors. We have then introduced a solution calledABI approximation
that guarantees link-time compatibility as long as inter-package rela-
tionships are satisfied. ABI approximation satisfies a set ofnatural re-
quirements inherited from the context: dependency soundness, infer-
ence, and lightness, as well as binNMU-safety.

ABI approximation has been implemented and deployed in the De-
bian distribution through thedh_ocaml helper, aiming at managing the
dependencies of more than 300 OCaml-related binary packages.

Future work consists in some technical fixes whose need was re-
vealed by usingdh_ocaml, such as the observation that comput-
ing a single ABI for bytecode and native-code is incompatible with
architecture-independent packages. Also, we are considering design-
ing a mechanism for computing automatically OCaml-relatedABIs for
C stubs whose purpose is interacting with the OCaml runtime.That can
be done at C stub compilation-time (where and when the interface of the
matching OCaml objects are known) and then stored in some section of
the resulting object.

23

References

[1] A.W. Appel and D.B. MacQueen. Separate compilation for Stan-
dard ML. In PLDI 1994: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implemen-
tation, pages 13–23. ACM, 1994.

[2] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli.
Package upgrades in FOSS distributions: Details and challenges.
In HotSWup’08: Proceedings of First ACM Workshop on Hot Top-
ics in Software Upgrades. ACM, 2008.

[3] Ulrich Drepper. How to write shared libraries.http://people.
redhat.com/drepper/dsohowto.pdf, 2002. Revision August
2006.

[4] Fedora Project. OCaml packaging guidelines.http://
fedoraproject.org/wiki/Packaging/OCaml. Retrieved Oc-
tober 2009.

[5] Joey Hess. debhelper debian package: helper programs
for debian/rules. http://packages.debian.org/sid/

debhelper/, 2009. Version 7.0.15.

[6] Ian Jackson and Christian Schwarz. Debian policy manual. http:
//www.debian.org/doc/debian-policy/, 2009.

[7] S. C. Johnson. Lint, a C program checker. (65), 1978.

[8] Martin F. Krafft. The Debian system: concepts and techniques.
Open Source Press, 2005.

[9] Sylvain Le Gall, Sven Luther, Samuel Mimram, Ralf Treinen,
and Stefano Zacchiroli. Debian OCaml packaging pol-
icy. http://pkg-ocaml-maint.alioth.debian.org/ocaml_

packaging_policy.html/, 2009.

[10] Xavier Leroy. Manifest types, modules, and separate compilation.
In POPL’94: Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 109–
122. ACM, 1994.

24

[11] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme
Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. Man-
aging the complexity of large free and open source package-based
software distributions. InASE 2006: 21st IEEE/ACM Internation
Conference on Automated Software Engineering, pages 199–208.
IEEE CS Press.

[12] L. Presser and J.R. White. Linkers and loaders.Computing Sur-
veys (CSUR), 4(3):149–167, 1972.

[13] Diomidis Spinellis. Type-safe linkage for variables and functions.
SIGPLAN Notices, 26(8):74–79, 1991.

[14] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison Wesley Professional, 1997.

[15] Stefano Zacchiroli. Enforcing OCaml link-time com-
patibility using Debian dependencies. Debian wiki:
http://wiki.debian.org/Teams/OCamlTaskForce?action=

AttachFile&do=get&target=dh-ocaml-design.pdf, January
2009. Design document, retrieved October 2009.

25

