Enforcing Type-Safe Linking using
Inter-Package Relationships

M. Dogguy” —S. Glondu® — S. Le Gall™ —S. Zacchiroli* !

* Laboratoire PPS, UMR 7126
Université Paris Diderot-Paris 7
Case 7014
F-75205 Paris Cedex 13

{dogguy,glondu,zack}@pps. jussieu.fr
** OCamiCore S.AR.L.

sylvain.le-gall@ocamlcore.com

ABSTRACT. Strongly-typed languages rely tink-time checkgo ensure that type safety is not
violated at the borders of compilation units. Such checkaikvery fine-graineddependencies
among compilation units, which are at odds with the implsisumption obackward compat-
ibility that is relied upon by common library packaging techniqueéspted by FOSS (Free and
Open Source Software) package-based distributions. Assecpence, package managers are
often unable to prevent users to install a set of librariesclwttannot be linked together. We
discuss how to guarantee link-time compatibility usingifgackage relationships; in doing so,
we take into account real-life maintainability problemskas support for automatic package
rebuild and manageability of ABI (Application Binary Intace) strings by humans. We present
the dh_ocaml implementation of the proposed solution, which is curgeirtluse in the Debian
distribution to safely deploy more than 300 OCaml-relatadkages.

RESUME. Les langages fortement typés reposent sur des vérificdiande I'édition de liens

afin de garantir que la slreté du typage reste respectée difficrentes unités de compila-
tion. Ces vérifications sont tres strictes, et incompasitaieec I'usage dans les distributions de
logiciels libres utilisant des paquets qui est de supposer lgs bibliothéques sont rétrocom-
patibles. Ainsi, les gestionnaires de paquets sont soureapables d’empécher un utilisateur

1. Partially supported by the European Community FP7, MAN@Dg@oject, grant agreement
n. 214898

d’installer un ensemble incohérent de bibliothéques. Naudions ici diverses approches a ce
probleme, et la solution que nous proposons, qui a été adqmaé Debian avec succes pour
plus de 300 paquets.

KEYWORDS: static typing, separate compilation, linking, free softeyad=OSS, distribution,
package, dependency, OCaml, Debian

MOTS-CLES : typage statique, compilation séparée, édition de liengiclel libre, FOSS,
distribution, paquet, dépendance, OCaml, Debian

1. Introduction

Type safety is a tricky business, even more so when sepavaie ¢
pilation is desired. In the world of system-level languages link-
ers [12]—such as the C language and the widespread GNUkeny
few checks are performed at the final linking stage; a bit ainfaiza-
tion will help in understanding them. Given a setaoimpilation units
{uy,...,u,} to be linked together the linker checks, in essence, a form
of referential integrity, i.e. that all symbols needed byolwved compi-
lation units are actually available within the set. We catjuirements
of a compilation unitR (u) the set of required symbols aagplication
binary interface(ABI) of a compilation unitA(«) the set of provided
symbols. The linker notion of “linkability” can hence be gped as
follows:!

Definition 1 (Linkability). link{u,...,u,} = Oiff:

DU, R(ui) € U; Awi)
2)Vij, i#j— Alu) N Aluy) =10

where the second condition avoids multiple definitiériéo matter the
type system expressivity, it is obvious that such a linkirsgighline can-
not help in enforcing type safeggcross compilation unitsf not relying

1. We do not strive for completeness here, we grasp only thediohecks that will help in
comparing with the strongly typed language world. For theesacason, we do not distinguish

between static and dynamic linking.
2. Actually, in some corner cases, the linker can allow theut,that is uninteresting for our

purposes.

Listing 1: foo.ml Listing 2: bar.m1 Listing 3: main.ml

let hello () = let hello () = let _ =
Printf.printf Foo.hello () Bar.hello ()
“Hi !\nn

Figure 1. sample OCaml compilation units

on name mangling hacks [13], or delegating it to external le/fpoo-
gram verification [7].

Moving to the world of functional, statically typed prograrng
languages, such as OCaml or Haskell, link-time checks gee itihr-
ough mainly because types come into play. Not only crosstiedgipe
compatibility is challenging to verifper se[1, 10], but also technical
guarantees that ABIs do not change between compile timealofidual
units and link time are requested to be type-aware. Theisalatlopted
by OCaml is, for each compilation unit, to expose two setmotiule
namesassociating each name to a cryptographic hasihecksunthat
grasps the type information of that module.

Example 1. Let’s consider the sources of Figure 1. After (bytecode)
compilation of bar.mi—which in turn needs a compiled version of
foo.ml—the resulting compilation unit contains the following *as
sumptions”:

$ ocamlc -c foo.ml bar.ml

$ ocamlobjinfo bar.cmo

Unit name: Bar

Interfaces imported:
807ecd3a1538992580464c03462c9964 Printf
da00042bb934260afe41d004bc91fe2e Foo
9e3404342379641955461e6944482508 Bar

where we can see thatr. cmo exports an ABI consisting of the inter-
faceBar with a specific MD5 checksum, and thatatjuiressome other
checksum-tagged interfaces. Among them we canfpoprovided by
foo.ml, and Printf, provided by the OCaml standard library which is
linked in by default. If the ABI ofoo. cmo changes between the compile

time ofbar. cmo and the final link time, the user will incur in the sadly
well-known “inconsistent assumptions” error:

$ ocamlc -c foo.ml bar.ml

$ echo "let gotcha () = ()" >> foo.ml

$ ocamlc -c foo.ml

$ ocamlc foo.cmo bar.cmo main.ml

Files bar.cmo and foo.cmo make inconsistent
assumptions over interface Foo

In our simple formalization, the additional checks perfedhiby OCaml
already fit, by simply considering botR («) and.A(u) to be sets of
pairs (m, c), wherem is the name of an OCaml module anis its asso-
ciated checksum. The only additional property checked byaaml
linker is that, given a set of compilation units, the mappb®ween
module names and checksums is a function, i.e. that a mosluleti
associated with different checksums. Simplifying the altaristics of
the standard librargtdlib, the failure of Example 1 can now be ex-
plained as follow, where the final equation was supposeduateghe
empty set in order to satisfy Definition 1.

R(stdlib) = 0
R(foo.cmo) =
R(bar.cmo) =

(Printf,807ec...)}
(Printf,807ec...),
(Foo,da000...) }
(Printf,807ec...)}
(Foo,24293...)}
(Bar,9e340...)}

A(foo.cmo)
A(bar.cmo) =

{
{
A(stdlib) = |
{
{

Uwens R(w) \ Uyens A(u) = {(Foo,da000. . .)}
(whereM = {stdlib, foo.cmo, bar.cmo})

The ability of the linker to detect this kind of unsound asgum
tions comes at a cost: ABI changes more frequently than inCthe
case. Indeed, with system-level linking, the ABI of a givertican
inhibit linkability only by removing symbols from it. Backavd ABI
compatibility—which of course does not imply type safetyanrde re-
tained by simply adding new symbols, which is unsurprigigimmon

practice in the work-flow of C libraries. With type-awareling, ABIs
break at each change in a modéilep matter if it is an addition or a re-
moval, because each such modification will change the chetks$the
module. While C libraries offer (type-unsafe) backwarddmyncompat-
ibility by default, OCaml libraries have the converse défahey break
binary compatibility at each change.

Unfortunately for most users of languages such as OCaml and
Haskell, packaging systems and techniques used in manstr®©SS
(Free and Open Source Software) distributions have beegraeswith
implicit backward compatibilitamong libraries in mind. Dependencies
on library packages are usually expressed in forms likedheving:

Package: my-app
Depends: libfool (>= 1.2.3)

where it is implicitly assumed that future versions of the library
will either be backward binary compatible, or change th&kpge name
tout court for instance switching teibfoo?2.

The advantage of the backward compatibility assumptiorhat t
inconsistent software installations, where installeddiles lack the
needed objects to be linkable, are detected at the depeniwet and
can hence be spotted by package managers. Given that therees
liable mapping between library versions and ABIs (new \@rscan
change ABIs, but are not forced to), we observe that with tG=ai0I
linking discipline the advantage of spotting linkabilityrers at the de-
pendency level is gone. As most OCaml users on distribusanh as
Debiarf have experienced, it indeed frequently happens that upgrad
involving OCaml libraries temporarily leave the build tob&in in an
inconsistent state, requiring users to: recompile dependent libraries
by hand, rollback the upgrade (if possible), or simply wait fixed
packages (of all involved libraries) from the distribution

3. Here, we do not distinguish among assumptions on intesfaod assumptions on implemen-
tations, these details are postponed to Section 5.

4. http://www.debian.org

5. For example, http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=238727 (re-
trieved October 2009); similar reports are very frequemirdutransitions to one OCaml version
to the next one, since all libraries need to be rebuilt.

In this paper we show how to make the packaging system aware
of complex and frequently changing ABIs used by languageb si$
OCaml and Haskell, hence shielding users from the instafiatf non-
linkable libraries. Attempting to do so will equate to trgito install a
package whose dependencies cannot be satisfied. We adraevedult
by coalescing ABIs in a single, human-readable, checksuaileebABI
approximatior—which is then reified as a “virtual” package known to
the packaging system, de facto closing the gap betweenezgaased
inter-package relationships and fine-grained inter-unkimg assump-
tions.

1.1. Paper structure.

The next section introduces some concepts of the FOS Shdistmn
context that will be needed throughout the paper. Sectias8pthe re-
quirements for the solution we look for, solution which istdescribed
and analyzed in Section 4; its actual implementation—irctirgext of
the Debian distribution and for the OCaml language—is dised in
Section 5. From now on, we will focus on the OCaml language and
its packaging in Debian, but reasoning and choices are geeeough
to be ported to similar languages (with strong typing anghéaesable
linking assumptions) and distributions (based on binagkpges).

2. Packaging basics
2.1. Packages

In most FOSS distributions—and, more generally, in compbne
based systems [14]—software components are manadpiolaay pack-
ageg[2] which define the granularity at which users can add or r&mo
software. A binary package is essentially a bundle of datad{gables,
documentation, media, etc.) to be deployed on the file systadt
ditionally, binary packages are described by meta-inféianawhich
include complexnter-package relationshipthat describe the static re-
quirements to run properly on a target system. Requirenmaetex-
pressed in terms of other binary packages, possibly withicgens on
the desired versions. Both positive requirementspeéndencigsand

negative requirementsd@nflicty are supported by most packaging sys-
tems.

Example 2. An excerpt of the meta-data of theamninet library in
Debian currently reads:

Package: libocamlnet-ocaml-dev
Version: 2.2.9-3

Depends: ocaml-nox-3.10.2, ocaml-findlib,
libocamlnet -ocaml (= 2.2.9-3),

libpcre -ocaml-dev (>= 5.11.1),

libcryptgps -ocaml-dev (>= 0.2.1)

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,

librpc-ocaml -dev

Conflicts: libequeue-ocaml-dev (<< 2.2.3-1),
libnetclient -ocaml-dev (<< 2.2.3-1),
librpc-ocaml-dev (<< 2.2.3-1)

Description: 0Caml application-level Internet
libraries - core libraries

O©oO~NO UL WNPRF

el
AWNRO

In this short but representative example we can recognigaistin-
guishing features of inter-package relationships [6]:

— dependencies over other libraries, tools, and the OCderjireter
(line 3) which can be both versioned (eDibocamlnet-ocaml—
the runtime part of the package shown) or non-versioned
(e.g.ocaml-findlib);

— conflicts with some libraries (line 10), in this case witlpstseded
packages now included infdbocamlnet-ocaml-dev itself;

—virtual packageqline 7), i.e. the ability to declarésaturespro-
vided by the owning “real” package so that others can depen(bo
conflict with) feature names. In this ca3ébocamlnet-ocaml-dev
provides old library names such dsibequeue-ocaml-dev; de-
pendencies on it by other packages can be satisfied by ingtall
libocamlnet-ocaml-dev. The other typical use case of vir-
tual packages is to add an indirection layer about systemicesr
(e.g.mail-transport-agent) between packages providing the ser-
vice (e.g.postfix or exim4) and packages needing it (ed¥.on).

testing

upload

i@

maintainer

————— ==~
| legend

| D (bin or src) package

| —> human action

| —»» automatic processing
| - distribution release

|

trigger [__] staging area

Figure 2: package (auto-)building in Debian.

2.2. Auto-building and binNMUs

Source packageare a different type of packages that contain the
source code. Compiling them produces binary packé&@msurce pack-
ages are usually manipulated by packaggntainersworking for spe-
cific distributions. The mapping between source and binaigkages
is one to many; for instance, theamlnet source package produces
the package shown in Example 2 together with eight othempipack-
ages. Also, there exists a relationfild-dependenclgetween a source
package and all binary packages which are needed to build it.

The natural work-flow of packages is rather complex [8], tiaet p
that mostly concerns us is sketched in Figure 2. Maintainptsad
source packages to a package queue, together with the momckag
binary packages; considered as a whole, such an uploadiisoshée a
sourceful upload Given that maintainers usually own only a machine
for a single architecturguto-buildergor buildd) pick up the uploaded
source package and rebuild the corresponding binary paskageach
architecture supported by the distribution (about a dorethe case
of Debian). The only exception to this scheme arehitecture inde-
pendenipackages (osrch:all) that once built on any given architec-
ture, can then be installed on all architectures (e.g. s=cthey contain
portable interpreted code or bytecode); hergeh:all packages do

6. According to folklore, we use “packages” to refer to binpackages, and explicitly “source
packages” for the others.

not get rebuilt at all. All obtained binary packages flow te thnstable”
suitewhich is ready to be used by developers and testers in prtepara
of the future stable release.

In specific occasions (library transitions, etc.), binaagkages can
be rebuilt without intervention on their source packagdss might be
needed to fix builds performed in malformed environment. (®uggy
compiler) or to ensure a package still builds against a negive of a
library it depends upon. To that end, maintainers can triggeuilds
by requesting &#inNMU (a historic and unfortunate name standing for
“binary Non-Maintainer Upload”). For our needs, the impmittaspect
of binNMUs is that they do not allow to perform any changeshe t
source package.

2.3. Dependency inference

But how can a binary package change if its source packagdmsma
unchanged? The contents of the package (e.g. binary filegffcaurse
change as the toolchain used to build changes (compilesyids, etc.),
but it turns out that also package meta-information suchepeiden-
cies can change across rebuilds (and hence differ acrdsiseatares).

In fact, maintainers can exploit a mechanisndependency inference
to ease the tedious task of maintaining dependency infeeméfor in-
stance, the dependency information of fldonkey-server package
read as follows in the correspondiagurcepackage:

Package: mldonkey-server
Depends. adduser, mime -support, ucf,
${shlibs:Depends, ${misc:Depends

whereas in the resulting binary package they read:

Package: mldonkey-server

Depends. adduser, mime -support, ucf, 1libbz2-1.0,
libc6 (>= 2.3.2), libjpeg62,

libfreetype6 (>= 2.2.1), 1libgccl (>= 1:4.1.1),
zliblg (>= 1:1.1.4),

libgd2-noxpm (>= 2.0.367rcl dfsg) |

libgd2 -xpm (>= 2.0.367rcl~dfsg),

libpng12-0 (>= 1.2.13-4), libstdc++6 (>= 4.2.1),
debconf | debconf -2.0

What is going on is that variables—expressed¢{fhis: form}—
get expanded during build according to dependency inferei¢hile
maintainers can use custom expansion mechanisms, the aommo
way to expand variables is to rely upon specifegistries For
instance, the${shlibs:Depends} variable expands to all depen-
dencies that can be inferred by C shared library relatigssii3].
To that end, each C shared library installed on the system pro
vides a shlibs file which is in essence a record of tuples
(libraryname, packagename, versionpredicate) which contributes to
the C shared library registry. For instance, th&png12-0 package
provides a recordlibpng12, 1libpngl2-0, (>= 1.2.13-4)). When
themldonkey-server package gets built, all executables it ships are
inspected for relationships with C shared libraries (usiogls like
objdump). Since the/usr/bin/mldonkey-server executable needs a
C library calledlibpng12 to be loaded, a lookup for that library name
in the registry provides the matching dependenéyppng12-0 (>=
1.2.13-4) which is added to the expansion®fshlibs:Depends}.

3. Requirements

The goal of the solution we are looking for is to detect typexiae
linking incompatibilities at the dependency level. As thare several
possible solutions to that problem, we define in this sectiaet of
contingent requirements, mostly inherited from the cont&he first
obvious requirement is goal fulfillment.

Requirement 1 (Dependency soundnesdll binary packages ship-
ping compilation units should satisfy tldependency soundnegsp-
erty.

Property 1 (Dependency soundnesg)A packagep shipping OCaml
compilation units{u, . .., u, } hassound dependenciegth respect to
a repositoryR if and only if for all healthy installation > p, it holds
that link({v | 3¢ € R|(y ¢ € I andg shipsu}) =[O

7. The notions ohealthy installationand generated subrepositgryioted R|r, are easily ex-
plainable: an installation is a set of installed packagess healthy if all dependencies are

10

Intuitively, a package has sound dependencies if all catipit units
shipped by its (transitive) dependencies can be linkedthege De-
pendency soundness is clearly not a local property—i.eannot be
decided by considering a package in isolation—but this tssoopris-
ing given that our notion of linking is geared towards obitagna self-
contained executable.

Requirement 2(Dependency inferencefsiven a source packageand

its build-dependencieB = {py, ..., p,}, the dependencies that ensure
soundness on all binary packages obtained by buildinghould be
inferrableon the basis oB and its (transitive) dependencies.

Acknowledging that OCaml ABIs change very frequently, Regu
ment 2 asks for a mechanism of dependency inference (seerSayt
that relieves maintainers from the error-prone task of taamg by
hand the needed dependencies.

Requirement 3(binNMU-safety) If a packagep has sound dependen-
cies, performing a binNMU on it should not make its depenisngn-
sound.

This requirement not only means that inferred dependersties|d
not be tied to source package version, but also that we caalyobn
sourceful uploads. Hence, solutions requiring changestméorpo-
rated in source packages at each upload are not suitablesftagk. All
dependencies ensuring soundness should be recomputed turid,
on the basis of the build environment. While binNMU-safetinm
ics the homonymous accepted best-practice of packagingaiso a
real need to reduce maintenance burden. Since transitions dne
compiler version to the next require rebuilding all packagand given
that distributions like Debian contain nowadays more thdmadred
OCaml-related source packages, the ability to do tramsitiea binN-
MUs is crucial for the maintainability of the whole stack iagkage-
based binary distributions.

satisfied and no conflicts occur among installed packagesnergted subrepository is a repos-
itory subset obtained as the closure of the “depends ontioelatarting from a given set of
packages. Formal details can be found in [11].

11

Package: libfoo-ocaml-dev
Version: 1

Package: libbar-ocaml-dev

Version: 1

Depends: libfoo-ocaml-dev (>= 1)

Build -Depends: 1ibfoo-ocaml-dev (>= 1)

Package: main
Version: 1
Build -Depends: libbar-ocaml-dev (>= 1)

Figure 3: Past Debian dependency scheme for OCaml-relatdchges

Requirement 4 (Light dependencies)All inter-package relationships
needed to ensure dependency soundness should be tersablesad
human-manageable.

Albeit admittedly very informal, this requirement is medaten-
sure that package dependencies remain manageable by huBhaars
if there is no clear definition for that, discussions withive tDebian
project between OCaml maintainers and both the release®taath
users has given evidence that solutions like a simple dunati MD5
requirements as dependencies would not be acceptableedndiring
release management, quality assurance, or simply broksendency
analysis within a package manager, such dependenciesawddomany
(one for each ABI requirement) and too unfriendly. Requieatr at-
tempts to grasp this and similar desiderata.

3.1. Related work

Until the adoption of the solution presented in this pages,Debian
distribution were using the natural dependency schemedpicted in
Figure 3, where the snippets of Figure 1 are considered stipypack-
ages with matching names. The drawbacks of that solutiotwenrfeld:

8. The release team is a group of Debian developers who catedinansitions, goals and
deadline for the next stable release.

12

$ rpm -qRp ocaml-ocamlnet*.rpm

ocaml (Arg) = b6513be035dc9c8a458c189¢cd8841700

ocaml (Array) = 9c9fabf11e2d6992c427dded4d1168489

ocaml (Bigarray) = fc2b6c88ffd318b9f111abe46ba99902

ocaml (Buffer) = 23af67395823b652b807c4ae0b581211
snipped 67 morecaml (*) deps

$ rpm --provides -qp ocaml-ocamlnet*.rpm

ocaml (Equeue) = 329e036bb2778b249d6763d22407af19

ocaml (Ftp_client) =
d36822b105eacef219a2b6e0331ba34b

ocaml (Ftp_data_endpoint) =
£279805dc3b7cedb5d8554£92e287c889

ocaml (Generate) = 418dedddda65b04bdc4d0c6e9fb918d4

snipped 110 morecaml (*) virtual packages

Figure 4: Sample dependencies (on the left) and providadres(on
the right) according to the Fedora solution, for Hwamlnet library.

no dependency inference (the maintainer writes depenelebgihand),
no dependency soundness (there is no guarantee that fetsrens will
preserve ABI compatibility). Note that stricter versiore@icates, such
as e.g.libfoo-ocaml-dev (>= 1), libfoo-ocaml-dev (<< 2), (as it

is currently done for Haskell packages in Debian) will nob\pde
soundness either because version numbers are denselgarie2005,

a helper tool calledh_ocaml was proposed [15] to ease the burden of
maintaining OCaml-related dependendlasjmicking the architecture
of the shlibs registry for C shared libraries. Dependencies generated
by (old-style)dh_ocaml follow the scheme of Figure 3. The obtained
solution hence also fulfills Requirement 2, but not yet Regruent 1
(arguably the most important one).

The Fedora and Red Hat distributions, and after them othé&-RP
based distributions such as OpenSUSE and Mandriva, adoiffea d
ent solution [4]. At the end of build, they automatically pest all

9. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=328422, retrieved October
2009

13

OCaml bytecode objects; shipped by each binary package and, for
each pair(m,c) € R(u;), they add a dependency on a virtual pack-
age in the OCaml namespace which has the full MD5 checksum as
its version; pairs ind(u;) are similarly handled to generate the list of
provided virtual packages. No intermediate registry isdudeedora’s
solution provides soundness (up to a technical detail dssiin Sec-
tion 5) and implicit dependency inference, however it faghtness: as

it can be seen in Figure 4, it bloats package lists with oneaimpack-
age/dependency per exported/required OCaml module (vaaicthave

a performance hit on dependency resolution, in distrilmstithe size of
Debian). Also, it will expose users and other team membeisoth
human-meaningless and very long checksums.

The last alternative solution we are aware of A8l evolution
tracking [15]: it establishes an injective mapping between pack-
age ABIs and integers. The integer ideally represents ARir-‘v
sion” and is used to establish human-friendly virtual paekaames
(e.g.1libpcre-ocaml-dev-1) that provide soundness. Unfortunately,
this solution defeats binNMU-safety. Indeed, to avoid ARdrsion
clashes the mapping should be either maintained by handdgiyrto
what happens with C symbols tracking, where unexpectedgesaat
build time trigger build failures), or obtained via automanonotonic
increase of ABI versions. For the latter, we would need tc@nee
somewhere a history of past ABI numbers, which has no plastatp
during binNMUs: network is not accessible to avoid non-tetristic
builds and source packages cannot be changed.

Table 1 reviews the discussed solutions against our rageinés.
The last line is the solution we propose, described in netiee

4. ABI approximation

To overcome the limitations of the discussed approached)ave
devised a solution based on the idea of computing a singlezippa-
tion of the ABIs of all compilation units shipped by a giverckage. We
call such solutioABI approximatiorand its architecture is sketched in
Figure 5. Consider a (binary) packagkg shipping compilation units
uq,...,u, (atthe top-left of Figure 5). Its ABI approximation—noted

14

Table 1: Review of linkability enforcement solutions

Reqg. 1 Req. 2 Reg. 3 Req. 4

Solution soundness| inference | binNMU | lightness
past Debian 0 0 0 0
status quo

old-style

dh_ocaml H H H -
curren_t Fedora 0 0 0 0
guidelines
ABI e_volutlon 0 0 0 0
tracking
ABI o O O] O
approximation

A(pkg)—is obtained as a cryptographic hash of all ABI pairs of all
compilation units; intuitively:A(pkg) = hash(A(uy) o - - o A(u,)),
whereo is a concatenation operator which is used to incrementdtlg a
material on which the hash is také&h.

The obtained ABI approximation is then used in two differemal’s,
both eventually contributing to form the inter-packageatienships of
pkg For what concerns the interface exposedpig we directly
add a virtual package obtained by juxtapospigis name with the
ABI approximation itself. All packages relying on the set ABIs
A(uy), ..., A(u,) will depend on that virtual package.

Let's now assume that all dependenciespk§ itself already have
computed ABI approximations and that they are availableidtitime
(a sound assumption according to our linking disciplin@)efsure that
we can compute the dependencies on the correct virtual paska
I.e. the virtual packages corresponding to packages aldatisfy the
linking assumptionsR (u,), ..., R(u,)—we use anABI registry that
stores information about which packages provide which ABle reg-

istry is populated by tuples (simplified in Figure &y, ¢, pkg, A(pkg))

10. A more formal description would require more details onhlshing function, on module
naming conventions, etc. They are omitted from here for #e &f conciseness, but Section 5
provides some related details about the current implertienta

15

inter package

relationships
ABI(pkg)= pkg Package: pkg
hash(ABI(u_l), —[— wu_l Provides:

— u2 M pkg-ABI(pkg)

., ABI(u_n)) B
1 REQ(u_1)
L ——=
' ! lookup

[u_n — '
REQ(u_n) :‘

< ABI(u_1), pkg, ABI(pkg) >,

! bar-ABI(bar),
1
1

1
[baz-ABI(baz)

< ABI(u_n), pkg, ABI(pkg) >

ABI
registry

>
store v

Figure 5: ABI approximation: architecture

where(m, ¢) € A(u) for someu shipped bypkg Intuitively, each mod-
ule m exposed by some compilation unit with checksutmas a tuple
in the registry which relates it with a specific package nanteaverall

ABI approximation. Technically, the tuples are computetduald-time

and the registry is constructed incrementally by files sktppy pkg

itself.

Using the registry, we can now compute the dependency sertfie
pkg which will ensure its linkability. For eaclim,c) € R(u;), we
look up (m, ¢) (which is expected to be a primary key in any possible
configuration) in the registry to get a pair of package nant ABI
approximation. By juxtaposing them as before, we can nowt &mi
appropriate dependency snippets.

Example 3. The resulting dependencies for theaminet package,
which we have already sedrefore ABI approximation in Example 2,
is as follows.

Package: libocamlnet -ocaml-dev
Version: 2.2.9-7

Depends: ocaml-findlib,
libcryptgps -ocaml -dev-139d7,
libocamlnet -ocaml -3rxe6,
libpcre -ocaml -dev-kh2cO,
ocaml -nox-3.11.1

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,

16

librpc-ocaml-dev,
libocamlnet -ocaml -dev-3rxeb

Description: 0Caml application-level Internet
libraries - core libraries

We can notice that the package depends on the externalt gps and
pcre library with specific ABI approximations, and that it expo#n
ABI approximation itself. By comparison with the Fedoraelegencies
for the same package (see Figure 4), we observe that the lmigers of
provided and expected module checksums is here hidden iegis¢ry
and resolved at build time; the package interface exposasgesextra
virtual package, and one dependency for each externaliyonaeded.

To review ABI approximation against the requirements oftfeac3,
we start by observing that soundness is granted up to thefridkshes
of different sets of ABIs to the same approximated ABI. Lateire
about so-called “birthday paradox” gives an approximatinthe num-
ber of different, incompatible, versions of a library to basollision

with probability p:
1
n(p; H) ~ /2H In -

were H denotes the ABI approximation space size. In our practical
implementation’/ = 36° (see next section), so we reach the negligible
probability of 1 % of collision with 1103 versions.

Dependency inference is trivially provided by the ABI reagisac-
cording to the lookup mechanism described above. binNMgtgas
granted too as all the state needed to compute both theadfdepen-
dencies and the exposed approximated ABI is not stored isdbece
package (and hence does not need sourceful uploads to bgechan
rather, the state is kept in the registry which is contriduteby build-
dependencies of the package being built. Finally, argudbhendency
lightness is provided too. While ABI approximated strings aot nec-
essarily human-meaningful, they have the benefit of beimgtgonly
5 alphanumeric characters in the current implementatiéi$o, the
number of such strings that are needed for a given binarygugcks
bounded: one for the exported interface and one for eachagactte-
pendency, with the latter set replacing dependencies winzchd have

17

been needed anyhow, just replacing ABI approximations wéfsion
numbers.

The most notable limitation of ABI approximation is the “tability”
of approximations with respect to backwardmpatiblechanges. This
IS not surprising, given that the solution has been designecisely to
cope with frequent backwardcompatible changes. Still, sometimes,
backward compatible changes can happen in a given packagex-f
ample by adding a new module to a given library without tonghany
other existing module. In our formalism that translatesddiag a new
couple (Myew, Crew) t0 SOMeA(w;); trivially, property 1 is unaffected
by such addition. Nevertheless, the resulting ABI appration will
change, since the content on which the hash is computed hahge.
Practically, the problem is non-existent, given the lowgtrency of such
changes and given that—thanks to binNMU-safety—the adtéptck-
ages can be fixed by just scheduling their recompilationo Alge ob-
serve that this issue can be fixed only by allowing to export &tprox-
imations whose sizes are linear with respect to the numberoafules
shipped by a given package; in essence, that would mean kingic
Fedora’s solution, getting back its disadvantages.

5. Implementation

ABI approximation has been implemented in the context ofdke
bian distribution to manage the inter-package dependgrmdiall pro-
vided OCaml-related packages. At the time of writing, thabants
to 158 source packages that build-depend on OCaml, progl858
binary packages, and providing interfaces for 2 502 OCandutes.
Technically, the implementation is based @i ocaml, a helper tool
meant to be compatible with the Debhelper packaging helpes [5].
Some of its inner workings depends on how OCaml librariessafi¢
into binary packages, which we briefly highlight below.

Compiling a source package results in one or several binack-p
ages. For example, library source packages usually pro@tdeast)
two binary packages:

18

1) aruntimepackage, containing all the objects that might be needed
at runtime by software linked to the library;

2) adevelopmenpackage, containing all the objects that might be
needed to compile software that uses the library.

In the OCaml world, the runtime package typically contaitubs to C
libraries (the so called “bindings”) that are dynamicalbadied when
running pure bytecode executablesd), and the development package
contains interfaces in sourcen(li or .m1) and compiled (cmi) form,
along with compiled module objects dmo, .cma, .cmx, .o, .cmxa,
.a), META files and (mostlyocamldoc-generated) documentation. A
library might have no runtime package at all if it is meant &dbways
statically linked, which happens quite often with pure-@Cabraries.
However, when a library can be dynamically loaded by a pnogitzat
supports plugins, the runtime package can also provide, .cmxs,
andMETA files.

A library can be further splitinto several components. Téissually
left at the package maintainer discretion, and choices aanhetween
distributions. A typical reason for splitting a library iptional depen-
dencies that might be needed only by some compilation uriiesch
resulting component might then have its runtime and deveéoy pack-
ages. Finally, there are also non-library packages ship@i@aml bi-
naries. Overallgh_ocaml distinguishes three classes of (binary) pack-
ages:. runtime, development, and others. We henceforthidmmnas
alibrary a development package together with its runtime package, if
any. For example, thecamlnet source package produces the following
binary packages:

—1libocamlnet-ocaml: core library (runtime);
—libocamlnet-ocaml-dev: core library (development);
—1libocamlnet-ocaml-doc: documentation;
—libocamlnet-ocaml-bin: miscellaneous tools;
—libocamlnet-gtk2-ocaml-dev: GTK2 layer (development);
—1libocamlnet-ssl-ocaml: SSL layer (runtime);
—libocamlnet-ssl-ocaml-dev: SSL layer (development);

19

—libnethttpd-ocaml-dev: HTTP daemon libraries (develop-
ment);

—libapache2-mod-ocamlnet: Apache2 module.
Among them, four OCaml libraries can be recognized:

—1libocamlnet-ocaml/-dev,
—libocamlnet-gtk2-ocaml-dev (without runtime),
—libocamlnet-ssl-ocaml/-dev, and
—libnethttpd-ocaml-dev (without runtime).

To inspect OCaml compilation units (a required ability tgliement
ABI approximation), the OCaml standard distribution pa®s some
useful tools:

ocamlobjinfo reads assumptions of bytecode objectsmf, .cmo
and . cma files), as shown in Example 1;

ocamldumpapprox reads assumptions of native code objectsnt,
.cmxa files).

While OCaml bytecode objects make assumptions only on-inter
faces, native code objects may also make assumptions oerimeplta-
tions, e.g. due to inlining across compilation units. Thasgsumptions
are stored in cmx files, which might hence be useful even if the mod-
ule they represent are included in @nxa file. Most notably, the above
tools lack the ability to inspect bytecode executables ative plugins
(.cmxs). Such abilities are much needed: bytecode executabldst mig
depend on external C stubs, and a native plugin is a specalafdi-
brary and should be considered as such. To overcome thasatiams,
we have implementedcamlbyteinfo andocamlplugininfo; they
are currently shipped as part of theaml source package and relied
upon bydh_ocaml.

The solution described in section 4 is then implemented ibi&re
using two tools:

ocaml-md5sums manages the ABI registry. This tool is meant to be
generic (not Debian-specific). It inspects a set of objees fily

20

calling the most appropriate among the above tools, uses the
output to compute their dependencies and its approximaBdd A
It considers a library as a whole (runtime and development to
gether);

dh_ocaml is a frontend toocaml-md5sums; it looks for installed ob-
jects and binaries, passes themoleaml-md5sums and fills-
in substitution variables corresponding to dependenagramice
variables; it distinguishes between the three categofigpack-
ages:

— development packages depend on their own runtime package
(that explains the dependency @fibocamlnet-ocaml-3rxe6
that the attentive reader might have noticed in Example 18]}, a
possibly on other development packages;

—runtime and other packages depend only on other runtime
packages.

The actual ABI approximation is computed by consideringuhi®n
of two different sets ofA(-) for each compilation unit: one for as-
sumptions over interfaces, one for assumptions over imghtations
(no matter where they come from: plugin, object, or binar@n a
simple textual representation of the resulting set, a MDé&ckbum is
computed and then taken modulo a fixed hash space. Currsudl,
hash space relies on 5 alphanumeric, lowercase, plain{AS@tac-
ters, accounting fof26 letters + 10 digits)® ~ 60 - 10° different ABI
approximations. As discussed in the previous section diaite gives
a negligible clash probability, without sacrificing ligless.

We notice that alternative solutions, such as Fedora’scamently
not considering assumption on implementations (mostyikecause
the original tools in the OCaml distributions were not aldartspect
them). As a consequence they only provide soundness up te-imp
mentation incompatibility, which is usually more likely tmcur than
interface incompatibility. This being a minor drawback igagxable
(now that we have provided the missing tools), we also oles#rat
fixing it naively would mean doubling the already large nhumdiede-
pends/provides of Figure 4.

21

Example 4. Here is an excerpt of dependencies from theminet
sourcepackage (i.e. before expansion &y_ocaml):

Package: libocamlnet -ocaml-dev

Provides: libequeue-ocaml-dev,
libnetclient -ocaml -dev,

librpc-ocaml -dev,

${ocaml: Provides}

Depends: ocaml-findlib, ${ocaml:Depends,
${shlibs:Depends, ${misc:Depends

The result of the substitution performeddry ocaml in the correspond-
ing binary package can be seen in Example 3.

Both ocaml-md5sums and dh_ocaml are implemented in Perl to
avoid (build-)dependency cycles among the package shggpeam and
the ocaml package itself. Both tools are part of the-ocaml source
package, which is distributed under the terms of the GNU Gz eib-
lic License (version 3) and available from its Git reposjtbr

So far, we have effectively deployed this solution in abdusburce
packages (out of 100 library packages). This deploymergaied not
only past packaging errors such as missing dependenciealslouun-
related errors like libraries re-exporting modules theyndbown. The
most common example of that has been the embedding ofithe
module into third-party libraries. The remaining packagaesd most
notably libraries, are being ported da_ocaml at the time of writing,
their ported versions are all expected to be shipped witméxé stable
release of Debian (codename “Squeeze”).

The only currently knownrih_ocaml-specific limitations are as fol-
lows:

— it is theoretically possible to change C stubs in a binacpmpat-
ible way while keeping the same interface; it is thereforegiae to
install an outdated version of C stubs while satisfying alpeihdencies
of a bytecode executable. This limitation is inherent to @Ca

— architecture-independent packages that depend oniébraith
runtime cannot currently benefit from this solution, beeatiee ABI

11. http://git.debian.org/?p=pkg-ocaml-maint/packages/dh-ocaml.git

22

approximation string depends on the architecture (givearaptions on
implementations are not present on architectures lackiegdamlopt
native code compiler). This limitation can be solved by catimg two
separate ABIs: a native code and a bytecode one; the latteidshe
the same on all architectures.

6. Conclusions and future work

In this paper we have given some insights on the gap existag b
tween fine-grained dependencies that type-aware linkersaer to en-
force type-safety at compilation units borders, and thesmgrained
dependencies that can be expressed among packages in RGBS bi
distributions. That gap persisting, package managersnetllbe able
to defend users from installing OCaml libraries that canbwtinked
together due to annoyingficonsistent assumptions” link-time er-
rors. We have then introduced a solution calks@l approximation
that guarantees link-time compatibility as long as intaeckage rela-
tionships are satisfied. ABI approximation satisfies a setadfiral re-
qguirements inherited from the context: dependency sowsgjnefer-
ence, and lightness, as well as binNMU-safety.

ABI approximation has been implemented and deployed in tie D
bian distribution through théh_ocaml helper, aiming at managing the
dependencies of more than 300 OCaml-related binary paskage

Future work consists in some technical fixes whose need was re
vealed by usingdh_ocaml, such as the observation that comput-
ing a single ABI for bytecode and native-code is incompatibith
architecture-independent packages. Also, we are comsigldesign-
ing a mechanism for computing automatically OCaml-rela&ds for
C stubs whose purpose is interacting with the OCaml runtifthat can
be done at C stub compilation-time (where and when the exterdf the
matching OCaml objects are known) and then stored in sontesexd
the resulting object.

23

References

[1] A.W. Appel and D.B. MacQueen. Separate compilation f@nS

[2]

[3]

[4]

dard ML. In PLDI 1994: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and impleme
tation, pages 13—-23. ACM, 1994.

Roberto Di Cosmo, Paulo Trezentos, and Stefano Zadchiro
Package upgrades in FOSS distributions: Details and clupdke

In HotSWup’08: Proceedings of First ACM Workshop on Hot Top-
ics in Software Upgrade#\CM, 2008.

Ulrich Drepper. How to write shared librariegttp://people.
redhat.com/drepper/dsohowto.pdf, 2002. Revision August
2006.

Fedora Project. OCaml packaging guidelines.http://
fedoraproject.org/wiki/Packaging/0Caml. Retrieved Oc-
tober 2009.

[5] Joey Hess. debhelper debian package: helper programs

[6]

[7]
[8]

[9]

[10]

24

for debian/rules. http://packages.debian.org/sid/
debhelper/, 2009. Version 7.0.15.

lan Jackson and Christian Schwarz. Debian policy manttalp :
//www.debian.org/doc/debian-policy/, 2009.

S. C. Johnson. Lint, a C program checker. (65), 1978.

Martin F. Krafft. The Debian system: concepts and techniques
Open Source Press, 2005.

Sylvain Le Gall, Sven Luther, Samuel Mimram, Ralf Trame
and Stefano Zacchiroli. Debian OCaml packaging pol-
icy. http://pkg-ocaml-maint.alioth.debian.org/ocaml_
packaging policy.html/, 2009.

Xavier Leroy. Manifest types, modules, and separatepitation.

In POPL'94: Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesyes 109—
122. ACM, 1994.

[11] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, i3é&rd
Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. Man-
aging the complexity of large free and open source packageeb
software distributions. IMSE 2006: 21st IEEE/ACM Internation
Conference on Automated Software Engineerpages 199-208.
IEEE CS Press.

[12] L. Presser and J.R. White. Linkers and load&Zemputing Sur-
veys (CSURY(3):149-167, 1972.

[13] Diomidis Spinellis. Type-safe linkage for variablesidunctions.
SIGPLAN Notices26(8):74—79, 1991.

[14] Clemens Szyperski. Component Software: Beyond Object-
Oriented ProgrammingAddison Wesley Professional, 1997.

[15] Stefano Zacchiroli. Enforcing OCaml link-time com-
patibility using Debian dependencies. Debian wiki:
http://wiki.debian.org/Teams/0CamlTaskForce?action=
AttachFile&do=get&target=dh-ocaml-design.pdf, January
2009. Design document, retrieved October 2009.

25

