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a b s t r a c t

We present the left inverse of Reynolds’ defunctionalization and we show its relevance
to programming and to programming languages. We propose two methods to transform a
program that is almost in defunctionalized form into one that is actually in defunctionalized
form, andwe illustrate themwith a recognizer forDyckwords andwithDijkstra’s shunting-
yard algorithm.
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1. Introduction

This article is a continuation of Danvy and Nielsen’s earlier article ‘‘Defunctionalization at Work’’ [32], that outlined the
extent to which Reynolds’ defunctionalization [59] is pervasive in writing and transforming programs, and in specifying
and implementing programming languages. Our goal here is to show that the left inverse of defunctionalization, i.e.,
refunctionalization, is also relevant to programming and to programming languages.

1.1. Defunctionalization: Origin, motivation, and applications

Reynolds introduced defunctionalization to specify higher-order definitional interpreters using first-order means [59].
He presented it as a mere programming technique, and, except for deriving a first-order semantics in his textbook on
programming languages [62, Section 12.4], he never used it again [61]. Since then, defunctionalization has been chiefly used
in compilers [15,17], program transformers [68], and partial evaluators [14,20]. It has also been independently discovered
in the context of logic programming [70], and subsequently it has been formalized in a typed setting [5,6,56,58]. Today it is
being used for programming the web [44] and for modeling aspect-oriented programming [38].
Over the last few years [1,10,25,53,54], Danvy and his students have retraced Reynolds’ steps from higher-order to first-

order interpreter by closure conversion (to make the data flow first order), transformation into Continuation-Passing Style
(to sequentialize the control flow), and defunctionalization (to make the control flow first order). They have identified
not only that a defunctionalized, CPS-transformed, and closure-converted interpreter has the structure of an abstract
machine, but also that a large number of independently designed abstract machines for variants of the λ-calculus are the
defunctionalized, CPS-transformed, and closure-converted counterpart of a compositional interpreter [2–4,7,11,24,31,63–
65], including Felleisen et al.’s CEK machine, which was actually designed as such [41, page 196]. A practical byproduct of
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this observation is that evaluation contexts – which are notoriously non-trivial to get right – can be obtained mechanically
by defunctionalizing the continuations of a compositional interpreter.

1.2. Refunctionalization

Not all abstract machines, however, are in defunctionalized form. It is our thesis here [25,54] that a number of them
can be restated to be so. The goal of this article is to propose two techniques – disentangling and merging apply functions
– to restate programs that are almost in defunctionalized form into ones that actually are in defunctionalized form (see
Section 3). These programs can then be refunctionalized into a higher-order counterpart. In particular, it is our observation
that refunctionalizing abstract machines always gives rise to a continuation-passing program.
Of course, not all defunctionalized programs and not all refunctionalized programs are interesting independently of each

other, but still some of them are. We mentioned above the case of abstract machines for the λ-calculus. Another example is
the samefringe problem: McCarthy’s famous simple solution [52] and, e.g., Henderson and Morris’ iterative solution based
on lazy lists [47] are the defunctionalized/refunctionalized counterparts of each other [13, Section 5]. Another example is the
reverse function: Hughes’ efficient reverse function based on curried list constructors [48] and the usual accumulator-based
fast reverse function are the defunctionalized/refunctionalized counterparts of each other [32]. More examples are available
elsewhere [25,32,42,53,54] aswell as in Sections 4 and 5, but let usmention a last one that pertains to refunctionalization. On
the basis that continuations are a functional representation of control in a continuation-passing evaluation function, Landin
is not listed among the co-discoverers of continuations [60]. Yet his SECD machine is in defunctionalized form and the
defunctionalized counterpart of a compositional continuation-passing evaluation function [24]. Furthermore, the J operator
captures the current dump, i.e., in refunctionalized form, the continuation of the caller [31]. This observation has led us to
suggest that Landin’s name be added to the list of co-discoverers of continuations [31, Section 8].

1.3. Overview

We first review defunctionalization and its left inverse, refunctionalization (Section 2). We then propose two steps for
restating programs fromalmost being in defunctionalized form to actually being in defunctionalized form: disentangling and
merging apply functions (Section 3), andwe illustrate these techniqueswith two parsing examples: recognizing Dyckwords
(Section 4) and Dijkstra’s shunting-yard algorithm (Section 5). After reviewing other applications of refunctionalization
(Section 6), we conclude (Section 7).

Prerequisites. Weexpect a basic familiaritywith StandardML,1with continuation-passing style (CPS) [28,57,67], andwith
the left inverse of the CPS transformation [30]. The presentation of defunctionalization below should be self-contained, but
the reader should not deny himself the pleasure of re-reading ‘‘Definitional Interpreters’’ [59].

2. Refunctionalization: The left inverse of defunctionalization

In his study of definitional interpreters for programming languages [59], Reynolds drew a distinction between those
that use higher-order functions, and thus possibly depend on the scoping rules of their metalanguage, and those that
use only first-order data structures, and thus are independent of the scoping rules of their metalanguage. He introduced
defunctionalization to transform programs that use higher-order functions into ones that use first-order data structures.
Refunctionalization is the inverse transformation. It transforms programs that use first-order data structures into ones that
use higher-order functions.

2.1. Defunctionalization

Operationally, defunctionalization replaces a function typewith a polynomial (sumof products) data type, and introduces
an apply function that interprets the data type given the argument values of the original function type. It replaces
abstractions creating elements of the function type with applications of the data-type constructors. It replaces applications
of values of the function type to arguments with an application of the apply function to a value of the first-order type and
the same arguments. The defunctionalization algorithm can be informally sketched as follows.
The algorithmassumes that one has identified a target set of function abstractions. In a typed language, these abstractions

minimally all have the same type. Reynolds identified sets of abstractions by their ‘‘types’’ according to the semantic domains
of a definitional interpreter. Laterwork [5,6,32,56,58] considered all functions of a given type, or sets of functions determined
by a control-flow analysis [66]. In any case, the set has to be closed under data flow to call sites: if a function in the set can
be called from a call site in the program, then all functions that can be called from that call site are in the set.

1 And with the option data type: datatype ’a option = NONE | SOME of ’a.
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Fig. 1. An environment signature.

We assume the identification of a set of n abstractions {λx.Mi | 1 ≤ i ≤ n} all of type τ → τ ′, and closed under data
flow to call sites.2 Each abstraction has a (possibly empty) set ofmi typed free variables {xij : τ

i
j | 1 ≤ j ≤ mi}, not including

variables that are bound in the top-level environment. Defunctionalization consists of performing all of the following steps:

(1) Introduce a first-order data type: There are n data-type constructors Ci for 1 ≤ i ≤ n. The constructors uniquely
identify the abstractions being defunctionalized, and each variant of the data type represents one of the abstractions.
There are thus n variants and variant i represents the values of the variables occurring free in abstraction i:

datatype τ_arrow_τ ′ = C1 of τ 11 × . . .× τ
1
m1

| . . .
| Cn of τ n1 × . . .× τ

n
mn

Introduce an apply function: The apply function dispatches on the data-type constructor to determine which
abstraction is being applied and to bind its free variables:

fun apply(f , x)= case f of
C1(x11, . . . , x

1
m1)⇒M1

| . . .
| Cn(xn1, . . . , x

n
mn)⇒Mn

The apply function may be curried or not; here, it is not.
(2) Replace abstractions: An abstraction λx.Mi with free variables {xij : τ

i
j | 1 ≤ j ≤ mi} is replaced with an application of

the data-type constructor, Ci(xi1, . . . , x
i
mi).

Replace applications: Any call site f x that may be an application of one of the abstractions is replaced with a call to
the apply function, apply(f , x).

2.2. Example: From higher-order to first-order environments

An environment is a mapping from identifiers to values that minimally satisfies the ML signature displayed in Fig. 1. To
satisfy this signature, a module should define a representation of identifiers (e.g., as strings), a type of environments that
is polymorphic with respect to the values denoted by the identifiers, a representation of an empty environment, a function
extend to extend a given environment with a given identifier and a given value, a function lookup to retrieve the value
associated with a given identifier in a given environment, and an exception UNBOUND to be raised by lookup if the given
identifier is not in the domain of the given environment.
Environments are traditionally implemented either as functions from identifiers to values or as association lists. In this

section we show that defunctionalizing the former implementation yields the latter one.
Here is a functional implementation:

structure Higher_Order_Environment :> ENVIRONMENT
= struct

type ide = string
type ’a env = ide -> ’a (* the environment as a function *)
exception UNBOUND of ide

val empty = fn y => raise (UNBOUND y)

fun extend (x, v, e) = fn y => if x = y then v else e y

fun lookup (y, e) = e y
end

2 For simplicity we consider single-argument functions. Without loss of generality, defunctionalization and refunctionalization can be applied to
programs with multiple-argument, curried or uncurried, functions as well.
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Here, an environment is a functionmapping an identifier to a value or raising the exception UNBOUND. Looking up an identifier
in an environment is achieved by applying this environment to this identifier.
Let us defunctionalize this representation of environments. In StandardML, the opaque signature ascription (:>) prevents

this function type from being used outside of this structure, and therefore we can proceed independently of the use of this
structure elsewhere in a program.
Only two abstractions give rise to inhabitants of the function type ide -> ’a:

• fn y => raise (UNBOUND y),
which has no free variables (we do not consider the exception name UNBOUND to be free because it will be lexically visible
in the apply function), and
• fn y => if x = y then v else e y,
which has three free variables: x of type ide, v of type ’a, and e of type ide -> ’a.

Let us follow the steps outlined in Section 2.1:

(1) Introduce a first-order data type: The function type ide -> ’a is replaced by the following new data type:

datatype ’a ide_arrow_alpha = C1
| C2 of ide * ’a * ’a ide_arrow_alpha

This data type is isomorphic to (ide * ’a) list, which we use in the sequel.
Introduce an apply function: The apply function dispatches on the constructors of the first-order data type ([] and

::), and interprets each of them as the body of the corresponding higher-order function:

fun apply ([], y)
= raise UNBOUND y

| apply ((x, v) :: e, y)
= if x = y then v else e y

(2) Replace abstractions: The two abstractions are replaced with [] and (x, v) :: e respectively.
Replace applications: The two applications, e x in the original lookup function and e y in the apply function just
above, are respectively replaced with apply (e, x) and apply (e, y).

The result of defunctionalization is the traditional first-order representation of environments as an association list:

structure First_Order_Environment :> ENVIRONMENT
= struct

type ide = string
type ’a env = (ide * ’a) list (* the environment as an association list *)
exception UNBOUND of ide

val empty = []

fun extend (x, v, e) = (x, v) :: e

fun apply ([], y)
= raise (UNBOUND y)

| apply ((x, v) :: e, y)
= if x = y then v else apply (e, y)

fun lookup (y, e) = apply (e, y)
end

2.3. Refunctionalization

Refunctionalization is the left inverse of defunctionalization, mapping data types and apply functions in the image
of defunctionalization back to higher-order functions. Danvy and Nielsen were the first to consider an inverse of
defunctionalization [32].
A program with a first-order data structure and an apply function dispatching on it is in the image of Reynolds’

defunctionalization algorithm if this apply function is the sole point of consumption of values of the data type. More
generally, if there is only one case dispatch on the data type, then the dispatch can be abstracted into an apply functionwhose
arguments are the free variables of the entire case expression and whose return type is the type of the case expression, as
described in Section 3.1.
Once a data type and an apply function are recognized as being in defunctionalized form, refunctionalization proceeds by

reversing the steps of defunctionalization. A data type δ with an apply function of type δ × τ → τ ′ can be refunctionalized
into the functional type τ → τ ′. Refunctionalization consists of performing all of the following steps:
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(1) Replace applications of the apply function: A call to the apply function, apply(f , x), is replaced with the call to the
applied function, f x.

Replace data-type constructor applications: Data-type constructor applications are replacedwith abstractions based
on the apply function. We assume an apply function:

fun apply(f , x)= case f of
C1(x11, . . . , x

1
m1)⇒M1

| . . .
| Cn(xn1, . . . , x

n
mn)⇒Mn

Each constructor application Ci(v1, . . . , vmi) of Ci applied to values vj for 1 ≤ j ≤ mi is replaced by
(λx.Mi){v1/xi1, . . . , vmi/x

i
mi}, the capture-avoiding substitution of the constructor arguments for the free variables

in the abstraction represented by the apply function. If a constructor is applied to non-values, we insert let-bindings
for the non-value arguments before performing this step.

(2) Remove the apply function: Since the apply function is never called, its definition is no longer needed.
Remove the data-type definition: Since the constructors of the data type are never used, and the only case dispatch
on them (the apply function) has been removed, the data-type definition is no longer needed.

Refunctionalization is akin to the Scott-encoding [69] of a data type, i.e., the functional representation of a data type as its
case-dispatch function.

2.4. Example: From first-order to higher-order environments

In this section, symmetrically to Section 2.2, we show how refunctionalizing a traditional first-order implementation of
an environment as an association list yields a traditional higher-order implementation of an environment as a function.
Here is a traditional first-order implementation using an association list:

structure First_Order_Environment’ :> ENVIRONMENT
= struct

type ide = string
type ’a env = (ide * ’a) list
exception UNBOUND of ide

val empty = []

fun extend (x, v, e) = (x, v) :: e

fun lookup (y, e)
= let fun visit []

= raise (UNBOUND y)
| visit ((x, v) :: e)

= if x = y
then v
else visit e

in visit e
end

end

Here, an environment is an association list, i.e., a list of pairs of identifiers and values. An empty environment is represented
as the empty list and extending a given environment with a given identifier and a given value is achieved by pairing them
and consing the pair on the given environment. Looking up an identifier in an environment is achieved by traversing the
association list in search for the first matching identifier and raising the exception UNBOUND if none does.
Let us refunctionalize this representation of environments, which we can do locally because of the opaque signature

ascription (:>) that isolates the definition of this structure from its uses. We identify the association list as a first-order
data structure with a sole point of consumption, namely the visit function. To make visit fit the pattern that the apply
function is explicitly applied to two arguments, we first apply the first step of lambda-lifting [34,49] to visit, i.e., we make
it scope-insensitive by passing it explicitly its free variable y:

fun lookup (y, e)
= let fun visit ([], y)

= raise (UNBOUND y)
| visit ((x, v) :: e, y)

= if x = y
then v
else visit (e, y)

in visit (e, y)
end
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(The second step of lambda-lifting would be to make the definition of visit float to the same lexical level as that of lookup,
thereby obtaining recursive equations.)
With that, we follow the steps outlined in Section 2.3:

(1) Replace applications of the apply function: We replace calls to the apply function, visit (e, y), with calls to the
applied function, e y.

Replace data-type constructor applications: We replace data-type constructor applications with abstractions based
on the apply function:
• [] is replaced by fn y => raise (UNBOUND y), and
• (x, v) :: e is replaced by fn y => if x = y then v else e y.

(2) We then remove the definition of visit.

The result of refunctionalization is the traditional higher-order representation of environments as a function mapping
identifiers to values.

3. Towards putting programs in defunctionalized form

The hallmark of a defunctionalized data type and an apply function is that the apply function is the single point of
consumption for the data type (this characterization is due to Danvy andNielsen [32]). In this section, we present two simple
transformations for programs that almost, but do not quite, have this form: disentangling (Section 3.1) abstracts data-type
consumptions into functions, andmerging (Section 3.2) combinesmultiple candidate apply functions for the same data type
when possible. Both transformations are illustrated in Sections 4 and 5.

3.1. Disentangling

A program can fail to be in the image of defunctionalization if there are multiple points of consumption for elements of
a data type or if the single point of consumption is not in a separate function. This situation can occur, for example, when a
program is defunctionalized and then the apply function is inlined.
‘Disentangling’ consists of abstracting each case expression dispatching on a candidate data type into a separate function.

The arguments of the function are the free variables of the case expression and their types are the types of the free variables.
The return type is the type of the case expression.
Disentangling was first used for the transition function of the SECD machine [24]. Disentangling the transition function

of an abstract machine consists of splitting single transitions that dispatch simultaneously on multiple components of the
state into multiple serial transitions that dispatch separately on single components of the state. We illustrate this technique
in Fig. 3 of Section 4 for a push-down automaton recognizing Dyck words.

3.2. Merging apply functions

After disentangling, every case dispatch on a data type is abstracted into a function which is a candidate apply function.
If there is a single apply function, then the program can be refunctionalized. If there are multiple apply functions, then they
can be merged under some conditions.
A technique that frequently works for abstract machines is to merge the apply functions using the universal property of

sum types. Specifically, two functions apply1 : δ × τ1 → τ ′ and apply2 : δ × τ2 → τ ′ can be merged into a single function
apply : δ× (τ1+ τ2)→ τ ′ that performs a case dispatch on its second argument. To reflect this merging, calls to apply1 and
apply2 are adjusted to call apply with their second argument injected into the appropriate summand. (Dually, we can also
merge the codomains of the apply functions.)
Merging apply functions was first used to refunctionalize Burge’s version of the SECD machine with the J operator [31].

This technique works when the possible apply functions all have the same return types. In abstract machines this is usually
the case because the transition functions are all tail-recursive and thus share the same answer type, as illustrated in Fig. 4
of Section 4 for a push-down automaton recognizing Dyck words.

4. A worked-out example: Recognizing Dyck words

Dyck words are well-balanced words of left and right parentheses, which we represent in ML as follows:
datatype parenthesis = L | R

type word = parenthesis list

For example, the list [L, L, R, L, R, R] represents a Dyck word whereas the list [R, L] does not.
Dyck words are classically recognized with an abstract machine implementing a push-down automaton. This state-

transition system operates iteratively over a given list and a counter reflecting the number of open parentheses seen in
the list so far:
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Fig. 2. A Dyck-words recognizer in Standard ML.

Fig. 3. Dyck-words recognizer: disentangled version.

datatype nat = ZERO | SUCC of nat

The machine starts with a given word and a zero counter. At each iteration, one of the following transitions takes place:

• if the list of parentheses is empty and the counter is zero, a final, accepting state is reached;
• if the list of parentheses is empty and the counter is positive, a final, non-accepting state is reached;
• if the first parenthesis is a left one, the tail of the list is taken and the counter is incremented;
• if the first parenthesis is a right one and if the counter is zero, a final, non-accepting state is reached;
• if the first parenthesis is a right one and if the counter is positive, the tail of the list is taken and the counter is decremented.

Fig. 2 displays an ML program implementing this transition system.
The goal of this section is to refunctionalize this Dyck-words recognizer with respect to the counter. Graphically, we

proceed as follows:

Fig. 2 dis-
entangle

// Fig. 3
merge

apply
functions

// Fig. 4 refunc-
tionalize

// Fig. 5 transform
to

direct style

// Fig. 6

In Fig. 2, both parameters of run serve as induction variables: run dispatches both over the list of parentheses and over the
counter. We therefore disentangle run by introducing two specialized, mutually recursive versions: one with respect to an
empty word (run_nil) and the other with respect to a right parenthesis (run_par). The resulting disentangled program is
displayed in Fig. 3: run solely dispatches over the list of parentheses, and run_nil and run_par solely dispatch over the
counter.
The transition system displayed in Fig. 3 operates in lockstep with the original transition system,3 but it is not in

defunctionalized form with respect to the counter: the counter is dispatched upon both in run_nil : nat -> bool
and in run_par : nat * word -> bool. We therefore merge run_nil and run_par into a function run_aux : nat *
word option -> bool. The resulting merged program is displayed in Fig. 4. It is in defunctionalized form with respect to
the data type nat and its apply function run_aux.
The refunctionalized counterpart of themerged program in Fig. 4 is displayed in Fig. 5. Its function word option -> bool

is the refunctionalized counterpart of the data type nat and the apply function run_aux. This program is in CPS, and except
for errors, it uses its continuations linearly and in order. Its direct-style counterpart is displayed in Fig. 6. It is a recursive
program where not all calls are in tail position. As an aid to the eye, we have shaded the non-tail calls in grey. Errors are
handled with callcc and throw [30], though of course using an exception would do as well here.

3 The new machine takes one or two steps for each step in the original one.
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Fig. 4. Dyck-words recognizer: merged version.

Fig. 5. Dyck-words recognizer: refunctionalized version.

Fig. 6. Dyck-words recognizer: refunctionalized version expressed in direct style.

The counter that was explicit in the original recognizer (Fig. 2), the disentangled one (Fig. 3), the merged one (Fig. 4), and
the refunctionalized one (Fig. 5) is now implicit in the direct-style program (Fig. 6). In other words, the original recognizer
was implemented by a tail-recursive push-down automaton that managed an explicit data stack—namely the counter. This
explicit data stack is now implicit in the control stack of the language processor for the recursive program in direct style.

5. A worked-out example: Dijkstra’s shunting-yard algorithm

The shunting-yard algorithm is used to parse an arithmetic expression with operator precedence from infix form (as a
stream of tokens: literals, operators, and parentheses) to postfix form (again, as a stream of tokens) or to an abstract-syntax
tree. It is named for the railroad shunting yard because it uses a pair of tracks (stacks): one to store operand subtrees and
one to store operators until all the operands are complete.
This bottom-up parser is attributed to Dijkstra,4 and was developed for and used in one of the first Algol 60 compilers. It

is still used today to process binary expressions in the GCC parser for C and for Objective-C, for example.
The goal of this section is to refunctionalize a shunting-yard parser with respect to its stack of operators. The version

we consider here maps a stream of tokens (integers, addition operator, multiplication operator, left parenthesis, or right
parenthesis) to an abstract-syntax tree:

datatype token = LIT of int | ADD | MUL | L_P | R_P

4 ‘‘In the summer of 1959 I had discovered how to implement subroutines that could call themselves, by the end of the year I saw how to use a stack for
the evaluation of expressions and how to translate expressions from the usual infix notation into ‘reverse Polish’ (only we did not call it that).’’ [37]
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datatype expression = INT of int
| PLUS of expression * expression
| TIMES of expression * expression

For example, the ML program implementing the algorithm maps the list of tokens
[LIT 10, MUL, LIT 20, ADD, LIT 30, MUL, L_P, LIT 40, ADD, LIT 50, R_P]

into the abstract-syntax tree
PLUS (TIMES (INT 10, INT 20), TIMES (INT 30, PLUS (INT 40, INT 50)))

that represents 10× 20+ 30× (40+ 50). Using ++ and ** as ML infix notation for PLUS and TIMES, the result reads ((INT
10) ** (INT 20)) ++ ((INT 30) ** ((INT 40) ++ (INT 50))). We make use of this infix notation in Figs. 7–9 to
construct lists of expressions.
The algorithm is defined with an abstract machine implementing a push-down automaton with two stacks. This state-

transition system operates iteratively over a stack of subtrees and a stack of operators (XADD and XMUL) and parenthetical
separators (XPAR):

datatype operator = XADD | XMUL | XPAR

Themachine starts with a given list of tokens, an empty stack of subtrees, and an empty stack of operators. At each iteration,
one of the following transitions takes place:

• if the first token of the input list is a literal (LIT n), the tail of the list is taken and the corresponding expression (INT n)
is pushed on the stack of subtrees;
• if the first token of the input list is an operator x (ADD or MUL), then
– if the stack of operators is empty, the operator on top of this stack is a parenthesis (XPAR), or its precedence is strictly
lower than that of x, the tail of the input list is taken and the operator corresponding to x (XADD or XMUL) is pushed on
the stack of operators;

– otherwise, the precedence of the operator on top of the stack is higher than or the same as that of x; this operator is
popped off the stack, two expressions are popped off the stack of subtrees, the corresponding expression combining
the popped operator and the popped expressions is pushed back, and the operator corresponding to x is pushed on
the stack;

• if the first token is a left parenthesis (L_P), the tail of the input list is taken and the corresponding operator (XPAR) is
pushed on the stack;
• if the first token is a right parenthesis (R_P), operators are popped off the stack (and for each of them, two expressions
are popped off the stack of subtrees and the corresponding expression combining the popped operator and the popped
expressions is pushed back) until a parenthesis is met on the stack of operators; the tail of the input list is taken and the
parenthesis is popped from the stack of operators;
• otherwise, a final, non-accepting state is reached.

When the list of tokens is exhausted, the stack of operators is iteratively emptied in concert with the stack of subtrees as
described above. The final result is the expression on top of the stack of subtrees.
Fig. 7 displays a program written in Standard ML that implements the shunting-yard algorithm. We proceed as follows

to refunctionalize it with respect to the stack of operators:

Fig. 7
disentangle // Fig. 8

refunctionalize
and

transform to
direct style

// Fig. 9

As an ML program, the transition system in Fig. 7 is difficult to read because several of the parameters of run serve as
induction variables: run dispatches both over the list of tokens and over the stack of operators. (In contrast, the stack of
subtrees is only threaded passively and, except for errors in the input list of tokens, it does not influence the control flow of
the program.)
We therefore disentangle run into several specialized, mutually recursive versions: one with respect to an empty stack

of operators (run_nil), three with respect to each of the possible operators on top of the stack (run_add, run_mul, and
run_par), and one to dispatch on the stack of operators (run_aux). The resulting disentangled program is displayed in
Fig. 8: all of run_nil, run_add, run_mul, and run_par solely dispatch over the list of tokens, and run_aux solely dispatches
over the stack of operators. This transition system operates in lockstep with the original one implemented in Fig. 7: the new
machine takes one or two steps for each step in the original one.
In addition to beingmore readable, the transition system implemented in Fig. 8 is also in defunctionalized form: the stack

of operators and run_aux respectively form a data type and an apply function that are in the image of defunctionalization.
As for all transition systems in defunctionalized form, the refunctionalized counterpart of the program in Fig. 8 is in

CPS. Furthermore – again save for errors in the input list of tokens – it uses its continuations linearly and in order, and can
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Fig. 7. Dijkstra’s shunting-yard algorithm in ML.

Fig. 8. The shunting-yard algorithm: disentangled version.
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Fig. 9. The shunting-yard algorithm: refunctionalized version expressed in direct style.

therefore be expressed in direct style. We spare the reader with this CPS program (those who do not like these kinds of
things etc.), and display the corresponding direct-style program in Fig. 9: it is a recursive program where not all calls are in
tail position. As an aid to the eye, we have shaded the non-tail calls in grey. Errors are handled with callcc and throw [30],
though again using an exception would do as well.
The stack of operators that was explicit in Figs. 7 and 8 is now implicit in the direct-style program of Fig. 9. In other

words, the original algorithm was implemented by a tail-recursive automaton with two stacks. The stack of operators is
now implicit in the control stack of the language processor for this recursive program in direct style.
The refunctionalized shunting-yard algorithm still exhibits the standard features of a bottom-up parser: a return

corresponds to a reduce action, a simple tail call with trivial arguments corresponds to a shift action, and a non-tail call
corresponds to a state transition where the control flow at return time implements the goto transition associated with a
reduce action.

6. Perspectives

Let us list other applications of refunctionalization (Section 6.1) and thenmention its current limitations and alternatives
(Section 6.2).
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6.1. Other applications

We had to intervene in the following situations to put an abstract machine into defunctionalized form:

The SECD machine: The SECD machine only needed to be disentangled to be put in defunctionalized form: the C and
the D components can be refunctionalized into a control continuation and a dump continuation, respectively [24].

The SECD machine with the J operator: Two versions of the SECD machine with the J operator exist—the original one
by Landin and Burge [16] and a version due to Felleisen [39]. Disentangling Felleisen’s version yields a machine that is in
defunctionalized form (and uses a control delimiter). In contrast, disentangling Landin and Burge’s version is not sufficient
to put it in defunctionalized form; its apply functions also need to be merged [31].

Properly tail-recursive stack inspection: In Clements and Felleisen’s abstract machine for properly tail-recursive stack
inspection [18], stack inspection is achieved by traversing the current context and checking its permission tables. Unzipping
this context into an ordinary CEK-machine context and a list of permission tables yields a CEK machine with a state and an
error facility: this machine can be refunctionalized and mapped back to direct style all the way to a compositional monadic
evaluation function with a state+error monad [4]. Conversely, via refocusing [33], it syntactically corresponds to a new
version of Fournet and Gordon’s λsec-calculus [9, Section 7].

Full-reduction strategies: In our ongoing work on fully reducing abstract machines [54,55], we use both disentangling
andmerging to refunctionalize a number of abstractmachines [22,21,45,50,51] into compositional normalization functions.

6.2. Limitations and alternatives

Dynamic CPS: The original abstract machine for dynamic delimited-continuation operators [40] is not in
defunctionalized form. Disentangling it and then merging its apply functions was not enough for our purpose: we also
needed to thread a tail of delimited continuations [12]. It was then simple to make it correspond, through refocusing, to
a reduction semantics, and through refunctionalization, to a compositional evaluation function. Still, the trail of delimited
continuations is an ad hoc device for which we have found no other use so far.

Towards deobjectification and reobjectification: Object orientation offers an alternative to merging apply functions
with different domain and codomain types: the data type could be represented by an abstract class with a method for each
of the apply functions. Each variant of the data type would be represented by a subclass of this abstract class with a field
for each of the variant’s free variables. This ‘reobjectified’ program can be implemented in a language without objects using
any of the standard encodings of objects in objectless languages. The original ‘deobjectified’ program would then be such
an encoding, specialized to flat class hierarchies.

7. Conclusion

Wehave investigated the applicability of refunctionalization for transforming programs and implementing programming
languages. Elsewhere, we have illustrated its relevance to programming [13,29,32] and to specifying programming
languages [2–4,11,24,31].

7.1. Wirth

In some sense, ourwork on defunctionalization and refunctionalization provides a concrete illustration for the paragraph
that follows the definition of the quicksort algorithm, in Section 2.3.3 of Niklaus Wirth’s textbook "Algorithms and Data
Structures" from 1985:

Procedure sort activates itself recursively. Such use of recursion in algorithms is a very powerful tool and will be discussed
further in Chapter 3. In some programming languages of older provenience, recursion is disallowed for certain technical
reasons. We will now show how this same algorithm can be expressed as a non-recursive procedure. Obviously, the solution
is to express recursion as an iteration, whereby a certain amount of additional bookkeeping operations become necessary.

Dijkstra’s shunting-yard algorithm and Landin’s SECD machine were directly written for programming languages of ‘old
provenience’. In Section 5 and in our earlier work [24,31], we have shown how each is the defunctionalized and CPS-
transformed counterpart of a recursive program in direct style. Incidentally, the same can be said of the quicksort algorithm
in Wirth’s book: CPS-transforming and defunctionalizing the recursive definition that precedes the paragraph above in the
book yields the iterative definition that immediately follows in the book. So the ‘certain amount of additional bookkeeping
operations’ mentioned above can be mechanized using the CPS transformation and defunctionalization. The same could be
said for their respective correctness proofs: instead of developing them separately [46,71], these proofs could be considered
in the light of defunctionalization and refunctionalization [32, Section 5]—a future work.
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7.2. Dijkstra

On the whole, Dijkstra’s case against the GOTO statement [36] has been interpreted in the negative, as the forceful
denunciation of a programming sin. It seems to us, though, that his message, 40 years on, can also be understood as an
invitation to mindfulness when programming. Indeed consider a compiler from a structured language (e.g., one with while
loops and conditional commands) to an unstructured language (e.g., one with labels andwith conditional and unconditional
jumps): on the one hand, this compiler yields programs that use GOTO statements; on the other hand, as denotations
of structured programs, these unstructured programs only use GOTO statements to implement the control structures of
structured programs. In that light, Dijkstra’s implicit message is not so much that GOTO statements should be considered
harmful, no matter what, than one should be mindful about staying in or straying from the image of the compiler when
programming in the unstructured language:

In fact, finding oneself straying with good reason is a clear indication that a useful control construct is missing in the source
language. For example, C and Pascal programmers condone the use of GOTO for error cases because these languages lack an
exception mechanism.
Dijkstra’s implicit message applies to at least two situations involving a program transformation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mindful of the continuation
identifiers and of the parameters of continuations to stay in the image of the CPS transformation [23,26]:

Yet programmers use ‘‘the extra expressive power of CPS’’ to stray with good reason:
• for a simple example, not using the current continuation identifier prevents the computation from continuing
and therefore has the effect of aborting it; this effect can be obtained in direct style by adding an ‘‘abort’’ control
operator;

• for a common example, using another continuation identifier than the current one makes the computation
continue elsewhere; this effect can be obtained in direct style by adding, e.g., the control operator escape [59]
or call/cc [19,30];

• for a more radical example, one may altogether leave the language of CPS, where all calls are tail calls [67], and
mix CPS with non-tail calls, thereby introducing the notion of delimited control [25, Section 1.3]; this effect can
be obtained in direct style by adding, e.g., the delimited-control operators shift and reset [27].

Defunctionalization. Since, as pointed out in Section 1.1, defunctionalizing a CPS program yields an abstract machine, one
should be mindful about specifying abstract machines in defunctionalized form:

︸ ︷︷ ︸
small steps

︸ ︷︷ ︸
big steps

Indeed
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• CPS-transforming and defunctionalizing a function implementing a small-step semantics yields a function
implementing a reduction semantics [25];

• symmetrically, CPS-transforming and defunctionalizing a function implementing a big-step semantics yields a
function implementing an abstract machine [2–4,7,11,24,31]; and

• refocusing the evaluation function of a reduction semantics yields a function implementing an abstract
machine [8,9,33].

Straying from the image of the CPS transformation makes it possible for the reduction semantics on the left and
for the abstract machine on the right to specify, e.g., control effects.
In any case, most abstract machines have been designed independently of defunctionalization. It is our

experience that a number of them are in defunctionalized form, and that a number of others can be transformed to
be so, using the techniques described here (see Section 6) or using, e.g., GADTs to make them well typed [58]. We
currently have no sense about why one would want an abstract machine to stray from being in defunctionalized
form when using a functional metalanguage for specifying computation.

So overall, we see the CPS transformation and defunctionalization as useful guidelines that are consistent with Dijkstra’s
implicit message.
Getting back to the shunting-yard algorithm, it seems very plausible that Dijkstra programmed it initially in the image

of the above-mentioned compiler, while mentally picturing it as a structured program:
initialize the operator stack to be empty;
initialize the operand stack to be empty;
WHILE there are tokens in the input stream
DO peek the first such token;

IF this first token is a number
THEN read it and push it on the operand stack
ELSIF this first token is an operator
THEN IF the stack of operators is empty or has, at its top,

a parenthetical separator or an operator with a lower precedence
THEN read this first token and push it on the operator stack
ELSE reduce

ELSIF this first token is a left parenthesis
THEN read it and push a parenthetical separator on the operator stack
ELSIF this first token is a right parenthesis
THEN IF the top operator is a parenthetical separator

THEN read this first token and pop the top operator off the stack
ELSE reduce

OD;
WHILE the operator stack is non-empty
DO reduce
OD
(* The result is on top of the operand stack. *)

In Section 5, we have (1) observed that the shunting-yard algorithm takes the form of an abstract machine, and (2) nudged
it to be in defunctionalized form. Refunctionalizing it yields a program in CPS. Mapping this program back to direct style
yields a functional parser, farther and farther away from the Turing tarpit:

To close, when Dijkstra submitted ‘‘A Case against the GO TO Statement’’ [35] to CACM 40 years ago, Wirth used his
editorial discretion to change the title to ‘‘Go To Statement Considered Harmful’’ [36]. All proportions kept, we would be
grateful to our editor if he could leave the title of the present article as it is now: witness the drawing just above, abstract
machines in defunctionalized form are harmless. As for those that can be disentangled etc., it is our point that they are
mostly so.
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