
Vérification de programmes C concurrents

avec Cubicle : Enfoncer les barrières

JFLA
9 janvier 2014

David Declerck

Université Paris-Sud

Travail réalisé conjointement avec :

I Sylvain Conchon, Alain Mebsout (Université Paris-Sud)
I Luc Maranget (INRIA)

1



Synchronization Barriers

Data structure used to synchronize the execution of a group of
threads at a program point.

POSIX libraries implement barriers defined as

I a data type barrier t

I an initialization function barrier init

I a synchronization function barrier wait

2



Sense-Reversing Barriers

Demo.

3



Safe barrier

Good synchronization:

I There does not exist a thread before the barrier and another
thread after the barrier

Annotations in C source of these program points with

///exclusive

wait barrier(...);

///exclusive

4



Contributions of this work

Proving safety of synchronization barriers

I written in C

I for any number of threads

I automatically by model checking

We assume sequential consistency :

I Interleaving semantics

I Preservation of operations order

5



Compiling (a fragment of) C to Cubicle

A limited fragment of C (basically, just what we need for the
implementation of our benchmarks)

I int and void data types

I restricted usage of structures

I pointers limited to passing by reference

I loops, assignments, conditionals,

I arithmetic and relational operations

6



Target language

I Transition systems with states described by global variables
(of type int, bool and enumerations) and infinite arrays
indexed by thread identifiers

I Transitions are encoded by logical formulas and they can be
parameterized by thread identifiers (existential quantification)

∃i. T[i] = true ∧ X ≤ 100 ∧ ∀k. k 6= i =⇒ T[k] = false

∧ X′ = X+ 1 ∧ T′[i] = false

(here T′ and X′ denote respectively the value of array T and
variable X after the execution of the transition)

We can only check safety properties characterized by bad states

7



(very simple) Memory Model

A set of global variables shared between threads, and for each
thread i

I a program counter PC[i] of type t, where

type t = Idle | End | L1 | L2 | ...

I a stack represented by a set of k global variables STACK j[i]

8



Compilation schema: Example

x = x + 1 || . . .

corresponds to the following instructions

L0 : STACK 0[i] ← x

L1 : STACK 0[i] ← STACK 0[i] + 1

L2 : x ← STACK 0[i]

which are compiled as three transitions

∃i. PC[i] = L0 ∧ STACK 0′[i] = x ∧ PC′[i] = L1

∃i. PC[i] = L1 ∧ STACK 0′[i] = STACK 0[i] + 1 ∧ PC′[i] = L2

∃i. PC[i] = L2 ∧ x′ = STACK 0[i]

9



Compiling Thread Counters

How to encode the arbitrary number of threads N ?

#define N . . .
int cpt = N;

. . . 1 1 1 . . . ∀i. cpt′[i] = 1

cpt--;
. . . 1 1 1 . . .

↓
. . . 1 0 1 . . .

∃i. cpt[i] = 1 ∧ cpt′[i] = 0

if (cpt == 0) ... . . . 0 0 0 . . . ∀i. cpt[i] = 0

10



Proving the Sense-Reversing Barrier

Demo.

11



Benchmarks

Nodes Inv. Restarts Time

sb alt.c 598 180 53 11m27s

sb.c 414 156 34 5m21s

sb nice.c 303 139 49 28m8s

sb single.c 174 99 54 17m44s

sb loop.c - - - TO

12



Optimizations

1. We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

I SMT solver more efficient on booleans
I Invariant generation of model checker is not good with integers

2. Elimination of spurious traces arising from crash failure model
present to handle universal quantifiers of thread counters’
encoding

I Reduce number of backtracking (restarts) in model checker

13



Benchmarks: typing optimization

with typing without typing
Inv. Restarts Time Inv. Restarts Time

sb alt.c 152 7 7.64s 180 53 11m27s

sb.c 226 10 20.7s 156 34 5m21s

sb nice.c 106 9 11.6s 139 49 28m8s

sb single.c 115 5 3.11s 99 54 17m44s

sb loop.c 1577 33 14m49 - - TO

14



Benchmarks: crash failure model optimization

Refinement No refinement
Inv. Restarts Time Inv. Restarts Time

sb alt 37 1 2,17s 152 7 7,64s

sb.c 64 1 3,99s 226 10 20,7s

sb nice.c 51 1 2,54s 106 9 11,6s

sb single.c 36 1 1,12s 115 5 3,11s

sb single us.c – 0 4,94s – 0 5,06s

sb loop.c 275 1 59,8s 1577 33 14m49s

15



Future work

I Experiment with other types of synchronization barriers

I Larger subset of C

I C11 standard (semantic for concurrent programs)

I Improve Cubicle’s invariants generation mechanism for
numerical candidates

16



Merci.

17



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0;

x is int or bool

y = x;

z = y;

x, y and z have the same type

if (z) { x = x + 1; }

z is bool, and x is int

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y = x;

z = y;

x, y and z have the same type

if (z) { x = x + 1; }

z is bool, and x is int

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y = x;

z = y; x, y and z have the same type
if (z) { x = x + 1; }

z is bool, and x is int

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y = x;

z = y; x, y and z have the same type
if (z) { x = x + 1; } z is bool, and x is int

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0; x is int or bool
y = x;

z = y; x, y and z have the same type
if (z) { x = x + 1; } z is bool, and x is int

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;

y = 0;

y is int or bool

if (y == 0) { x = 0; }

y is int and x is int or bool

The program is well typed

x:int (for safety reasons)
y:int

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;

y = 0; y is int or bool
if (y == 0) { x = 0; }

y is int and x is int or bool

The program is well typed

x:int (for safety reasons)
y:int

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;

y = 0; y is int or bool
if (y == 0) { x = 0; } y is int and x is int or bool

The program is well typed

x:int (for safety reasons)
y:int

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y;

y = 0; y is int or bool
if (y == 0) { x = 0; } y is int and x is int or bool

The program is well typed

x:int (for safety reasons)
y:int

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0 && 1;

x is bool

if (x != y && y !=z && x != z) ...

x, y and z are bool, but only x is initialized

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0 && 1; x is bool

if (x != y && y !=z && x != z) ...

x, y and z are bool, but only x is initialized

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0 && 1; x is bool

if (x != y && y !=z && x != z) ...

x, y and z are bool, but only x is initialized

The program is rejected

18



Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0 && 1; x is bool

if (x != y && y !=z && x != z) ...

x, y and z are bool, but only x is initialized

The program is rejected

18



Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread
thus, t2 is not possible from that state

19



Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread
thus, t2 is not possible from that state

19



Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread

thus, t2 is not possible from that state

19



Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread

thus, t2 is not possible from that state

19



Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread
thus, t2 is not possible from that state

19



How to Refine the Crash Failure Model ?

∃i.�(i)

∃ij.�(i,j)

∃i. !(i)
∃i. … ∀j. j≠i ⇒"(j)

20



How to Refine the Crash Failure Model ?

∃ij.�(i,j)

∃i. … ∀j. j≠i ⇒!(j)

20



How to Refine the Crash Failure Model ?

∃ij. ...

∃ij.�(i,j)

∃i. … ∀j. j≠i ⇒!(j)

20



How to Refine the Crash Failure Model ?

∃ij.����

∃ij.�(i,j)

∃i. … ∀j. j≠i ⇒!(j)

20



How to Refine the Crash Failure Model ?

∃i.�(i)

∃ij.�(i,j)

∃i. !(i)
∃i. … ∀j. j≠i ⇒"(j)

20



How to Refine the Crash Failure Model ?

∃i.�(i)

∃ij.�(i,j)

∃i. !(i)
∃i. … ∀j. j≠i ⇒"(j)?

20


