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Synchronization Barriers

Data structure used to synchronize the execution of a group of
threads at a program point.

POSIX libraries implement barriers defined as

I a data type barrier t

I an initialization function barrier init

I a synchronization function barrier wait
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Sense-Reversing Barriers

Demo.
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Safe barrier

Good synchronization:

I There does not exist a thread before the barrier and another
thread after the barrier

Annotations in C source of these program points with

///exclusive

wait barrier(...);

///exclusive
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Contributions of this work

Proving safety of synchronization barriers

I written in C

I for any number of threads

I automatically by model checking

We assume sequential consistency :

I Interleaving semantics

I Preservation of operations order
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Compiling (a fragment of) C to Cubicle

A limited fragment of C (basically, just what we need for the
implementation of our benchmarks)

I int and void data types

I restricted usage of structures

I pointers limited to passing by reference

I loops, assignments, conditionals,

I arithmetic and relational operations
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Target language

I Transition systems with states described by global variables
(of type int, bool and enumerations) and infinite arrays
indexed by thread identifiers

I Transitions are encoded by logical formulas and they can be
parameterized by thread identifiers (existential quantification)

∃i. T[i] = true ∧ X ≤ 100 ∧ ∀k. k 6= i =⇒ T[k] = false

∧ X′ = X+ 1 ∧ T′[i] = false

(here T′ and X′ denote respectively the value of array T and
variable X after the execution of the transition)

We can only check safety properties characterized by bad states
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(very simple) Memory Model

A set of global variables shared between threads, and for each
thread i

I a program counter PC[i] of type t, where

type t = Idle | End | L1 | L2 | ...

I a stack represented by a set of k global variables STACK j[i]
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Compilation schema: Example

x = x + 1 || . . .

corresponds to the following instructions

L0 : STACK 0[i] ← x

L1 : STACK 0[i] ← STACK 0[i] + 1

L2 : x ← STACK 0[i]

which are compiled as three transitions

∃i. PC[i] = L0 ∧ STACK 0′[i] = x ∧ PC′[i] = L1

∃i. PC[i] = L1 ∧ STACK 0′[i] = STACK 0[i] + 1 ∧ PC′[i] = L2

∃i. PC[i] = L2 ∧ x′ = STACK 0[i]
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Compiling Thread Counters

How to encode the arbitrary number of threads N ?

#define N . . .
int cpt = N;

. . . 1 1 1 . . . ∀i. cpt′[i] = 1

cpt--;
. . . 1 1 1 . . .

↓
. . . 1 0 1 . . .

∃i. cpt[i] = 1 ∧ cpt′[i] = 0

if (cpt == 0) ... . . . 0 0 0 . . . ∀i. cpt[i] = 0
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Proving the Sense-Reversing Barrier

Demo.
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Benchmarks

Nodes Inv. Restarts Time

sb alt.c 598 180 53 11m27s

sb.c 414 156 34 5m21s

sb nice.c 303 139 49 28m8s

sb single.c 174 99 54 17m44s

sb loop.c - - - TO
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Optimizations

1. We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

I SMT solver more efficient on booleans
I Invariant generation of model checker is not good with integers

2. Elimination of spurious traces arising from crash failure model
present to handle universal quantifiers of thread counters’
encoding

I Reduce number of backtracking (restarts) in model checker
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Benchmarks: typing optimization

with typing without typing
Inv. Restarts Time Inv. Restarts Time

sb alt.c 152 7 7.64s 180 53 11m27s

sb.c 226 10 20.7s 156 34 5m21s

sb nice.c 106 9 11.6s 139 49 28m8s

sb single.c 115 5 3.11s 99 54 17m44s

sb loop.c 1577 33 14m49 - - TO
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Benchmarks: crash failure model optimization

Refinement No refinement
Inv. Restarts Time Inv. Restarts Time

sb alt 37 1 2,17s 152 7 7,64s

sb.c 64 1 3,99s 226 10 20,7s

sb nice.c 51 1 2,54s 106 9 11,6s

sb single.c 36 1 1,12s 115 5 3,11s

sb single us.c – 0 4,94s – 0 5,06s

sb loop.c 275 1 59,8s 1577 33 14m49s
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Future work

I Experiment with other types of synchronization barriers

I Larger subset of C

I C11 standard (semantic for concurrent programs)

I Improve Cubicle’s invariants generation mechanism for
numerical candidates

16



Merci.
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Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean
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int x, y, z;

x = 0;

x is int or bool

y = x;

z = y;

x, y and z have the same type

if (z) { x = x + 1; }

z is bool, and x is int

The program is rejected
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Optimization 1: Integer as Booleans

We designed a (simple) typing analysis to determine when a
variable of type int is used as a Boolean

int x, y, z;

x = 0 && 1;

x is bool

if (x != y && y !=z && x != z) ...

x, y and z are bool, but only x is initialized

The program is rejected
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Optimization 2: Elimination Spurious Traces

Crash Failure Model
type t = A | B | C

∀i. X[i] = A (inital states)

t1 : ∃i, j. i 6= j ∧ X[i] = A ∧ X[j] = A ∧ X′[i] = B

t2 : ∃i. X[i] = B ∧ ∀j. j 6= i =⇒ X[j] 6= A ∧ X′[i] = C

ϴ: ∃ i. X[i] = C

∃ i. X[i] = B

 pre_t2(i)

∃ i,j. i≠j ∧
X[i] = A ∧
X[j] = A   

 pre_t1(i, j)

the program contains at least two threads

the program could contain only one thread
thus, t2 is not possible from that state
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How to Refine the Crash Failure Model ?

∃i.�(i)

∃ij.�(i,j)

∃i. !(i)
∃i. … ∀j. j≠i ⇒"(j)
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