Vérification en Coq d'analyseurs statiques par interprétation abstraite

Xavier Leroy

Inria Paris-Rocquencourt

JFLA 2014

Remerciements

David Pichardie

et toute la fine équipe du projet Verasco :

Sandrine Blazy, Vincent Laporte, André Maronèze (Rennes)
Jacques-Henri Jourdan, Jérôme Feret, Xavier Rival (Paris-Rocquencourt)
Alexis Fouilhé, David Monniaux, Michael Périn (Grenoble)
Jean Souyris (Airbus)

Plan

- Introduction à l'analyse statique
- L'analyse statique par interprétation abstraite
- 3 Un peu de Coq : un interprète abstrait «pédagogique»
- 4 Passage à l'échelle : le projet Verasco
- 5 Conclusion et travaux futurs

L'analyse statique en bref

Inférer statiquement des propriétés d'un programmes qui sont vraies de toutes ses exécutions.

Au point p, on a $0 < x \le y$ et le pointeur p n'est pas NULL.

Accent sur inférer : pas d'aide du programmeur.

(P.ex. pas besoin de marquer les invariants de boucles dans le source.)

Accent sur statiquement :

- Les entrées du programmes sont inconnues.
- L'analyse doit toujours terminer.
- L'analyse doit s'exécuter en temps et espace raisonnables.

Exemples de propriétés inférables

Propriétés de la valeur d'une variable : (analyse de valeurs)

$$x=n$$
 propagation des constantes $x>0$ ou $x=0$ ou $x<0$ signes $x\in [n_1,n_2]$ intervalles $x=n_1\pmod{n_2}$ congruences valid $(p[n_1\dots n_2])$ validité des pointeurs p pointsTo x or $p\neq q$ (non-) aliasing entre pointeurs

 $(n, n_1, n_2 \text{ sont des constantes déterminées par l'analyse.})$

Exemples de propriétés inférables

Propriétés de plusieurs variables : (analyse relationnelle)

$$\sum a_i x_i \le c$$
 polyèdres $\pm x_1 \pm \cdots \pm x_n \le c$ octogones $expr_1 = expr_2$ équivalences de Herbrand

 $(a_i, c \text{ sont des constantes rationnelles déterminées par l'analyse.})$

Propriétés «non fonctionnelles» :

- Consommation mémoire.
- Pire temps d'exécution (WCET).

Utiliser l'analyse statique pour l'optimisation

Appliquer des égalités algébriques lorsque leurs conditions sont satisfaites :

$$x / 4 \rightarrow x >> 2$$
 si l'analyse dit $x \ge 0$
 $x + 1 \rightarrow 1$ si l'analyse dit $x = 0$

Optimiser les accès aux tableaux et via des pointeurs :

a[i]=1; a[j]=2; x=a[i];
$$\rightarrow$$
 a[i]=1; a[j]=2; x=1; si l'analyse dit i \neq j
*p = a; x = *q; \rightarrow x = *q; *p = a; si l'analyse dit p \neq q

Parallélisation automatique :

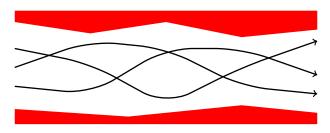
$$loop_1; loop_2 \rightarrow loop_1 \parallel loop_2$$
 si $polyh(loop_1) \cap polyh(loop_2) = \emptyset$

Utiliser l'analyse statique pour la vérification

Utiliser les résultats de l'analyse statique pour prouver l'absence de certaines erreurs à l'exécution :

$$b \in [n_1, n_2] \land 0 \notin [n_1, n_2] \implies a/b$$
 ne peut pas échouer
$$valid(p[n_1 \dots n_2]) \land i \in [n_1, n_2] \implies *(p + i) \text{ ne peut pas échouer}$$

Signaler une alarme dans le cas contraire.

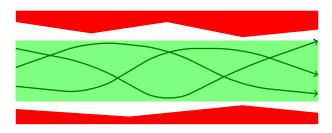


Utiliser l'analyse statique pour la vérification

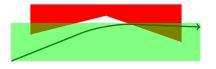
Utiliser les résultats de l'analyse statique pour prouver l'absence de certaines erreurs à l'exécution :

$$b \in [n_1, n_2] \land 0 \notin [n_1, n_2] \implies a/b$$
 ne peut pas échouer
$$\text{valid}(p[n_1 \dots n_2]) \land i \in [n_1, n_2] \implies *(p + i) \text{ ne peut pas échouer}$$

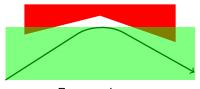
Signaler une alarme dans le cas contraire.



Vraies alarmes, fausses alarmes



Vraie alarme (comportement dangereux)



Fausse alarme (analyse trop imprécise)



Analyse plus précise (polyèdre au lieu d'intervalles) : la fausse alarme disparaît.

Quelques propriétés vérifiables par analyse statiques

Absence d'erreurs à l'exécution :

- Tableaux et pointeurs :
 - Pas d'accès hors bornes.
 - Pas de déréférencement du pointeur nul.
 - ▶ Pas d'accès après un free.
 - Contraintes d'alignement du processeur.
- Arithmétique entière :
 - Pas de division par zéro.
 - Pas de débordements arithmétiques (signés).
- Arithmétique à virgule flottante :
 - Pas de débordements arithmétiques (résultats $\pm \infty$)
 - ► Pas d'opérations indéfinies (résultats *Not a Number*)
 - Pas de pertes de précision catastrophiques.

Assertions simples posées par le programmeur.

P.ex. assert (0 <= x && x < sizeof(tbl)).

Plan

- Introduction à l'analyse statique
- 2 L'analyse statique par interprétation abstraite
- 3 Un peu de Coq : un interprète abstrait «pédagogique»
- 4 Passage à l'échelle : le projet Verasco
- 5 Conclusion et travaux futurs

$\label{eq:locality} \begin{array}{c} \text{Id\'ee n} \circ 1: \\ \text{analyser un programme,} \\ \text{c'est l'ex\'ecuter avec une s\'emantique non-standard} \end{array}$

L'interprétation abstraite pour les nuls

«Exécuter» le programme avec une sémantique qui :

- Calcule sur un domaine abstrait des propriétés désirées
 (p.ex. «x ∈ [n₁, n₂]» pour l'analyse d'intervalles)
 au lieu de calculer sur des choses concrètes comme les valeurs et les
 états.
- Gère les conditionnelles même si elles ne peuvent être résolues statiquement.
 - (Les branches then et else d'un if sont considérées comme prises toutes les deux. Les boucles while exécutent un nombre arbitraire d'itérations.)
- Termine toujours.

Exemple d'interprétation abstraite

Concret

 $\{ x = 3, y = 1 \}$

Abstrait

 $\{ x^{\#} = [0, 9], y^{\#} = [-1, 1] \}$

{
$$z = 3 + 2 \times 1 = 5$$
 } { $z^{\#} = [0, 9] + ^{\#} 2 \times ^{\#} [-1, 1] = [-2, 11]$ }
{ $b = \text{true}, x = 3, y = 1$ } { $b^{\#} = \top, x^{\#} = [0, 9], y^{\#} = [-1, 1]$ }
 $z = (\text{if } b \text{ then } x \text{ else } y);$
{ $z^{\#} = [0, 9] \sqcup [-1, 1] = [-1, 9]$ }

z = x + 2 * v;

ldée n° 2 :

une variable peut avoir différentes abstractions en différents points de programmes

Prise en compte du flot de contrôle (flow sensitivity)

(Au contraire des systèmes de types, où généralement une variable garde le même type en tout point de sa portée.)

Affectation impérative de variables :

Prise en compte des conditions booléennes :

$\label{eq:locality} \begin{array}{c} Id\acute{e}e\ n^o\ 3\ :\\ on\ peut\ aussi\ inférer\ des\ relations\\ entre les\ valeurs\ de\ plusieurs\ variables \end{array}$

Analyse relationnelle ou pas?

Analyse non relationnelle :

environnement abstrait = $variable \mapsto valeur$ abstraite

(Comme les environnements de typage.)

Analyse relationnelle :

les environnements abstraits sont un domaine comme les autres, avec :

- structure de demi-treillis : ⊥, ⊤, □, □
- une opération abstraite d'affectation.

Exemple : les polyèdres $\sum a_i x_i \le c$.

Idée n° 4 : l'élargissement : on peut calculer des points fixes même dans des domaines mal fondés

Les points fixes — le problème récurrent

Analyse statique d'une boucle :

```
while (...) { e^{\#} = X_0 }  \{ e^{\#} = X \}  ...  \{ e^{\#} = \Phi(X) \}  }
```

Étant donnés X_0 (l'état abstrait avant la boucle) et Φ (la fonction d'analyse du corps de la boucle), comment trouver X (l'invariant de boucle)?

$$X \supseteq X_0$$
 (première itération) $X \supseteq \Phi(X)$ (itérations suivantes)

Solution : X est le plus petit point fixe de $F = X \mapsto X_0 \sqcup \Phi(X)$ ou au moins tout post-point fixe de F $(X \supseteq F(X))$.

Le paradis

Théorème (Tarski)

Soit (A, \sqsubseteq, \bot) un ensemble partiellement ordonné tel que \sqsupset est bien fondé (pas de suites infiniment croissantes).

Soit $F: A \rightarrow A$ une fonction croissante.

Alors F admet un plus petit point fixe qui s'obtient par itération finie à partir de \bot :

$$\exists n, \perp \sqsubseteq F(\perp) \sqsubseteq \ldots \sqsubseteq F^n(\perp) = F^{n+1}(\perp)$$

Paradis perdu

La majorité des domaines abstraits ne sont pas bien fondés. Exemples :

- Les intervalles entiers : $[0,0] \sqsubset [0,1] \sqsubset [0,2] \sqsubset \cdots \sqsubset [0,n] \sqsubset \cdots$
- Les environnements : $variable \mapsto valeur \ abstraite$.

De plus, même lorsque l'itération de Tarski converge, elle converge souvent trop lentement :

$$x = 0$$
; while $(x \le 10000) \{ x = x + 1; \}$

(Partant de $x^{\#}=[0,0]$, il faut 10000 itérations pour obtenir le point fixe $x^{\#}=[0,10000]$.)

Paradis retrouvé : l'élargissement (widening)

Un opérateur d'élargissement $\nabla:A\to A\to A$ calcule une borne supérieure de son second argument de telle manière que l'itération suivante converge toujours et converge rapidement :

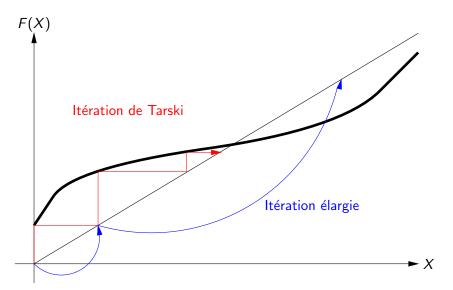
$$X_0 = \bot$$
 $X_{i+1} = \begin{cases} X_i & \text{si } F(X_i) \sqsubseteq X_i \\ X_i \nabla F(X_i) & \text{sinon} \end{cases}$

La limite X de cette suite est un post-point fixe : $F(X) \sqsubseteq X$.

Exemple : élargissement pour les intervalles :

$$[l_1, u_1] \nabla [l_2, u_2] = [\text{if } l_2 < l_1 \text{ then } -\infty \text{ else } l_1, \\ \text{if } u_2 > u_1 \text{ then } \infty \text{ else } u_1]$$

L'élargissement en action



Raffiner le post-point fixe

La qualité du post-point fixe peut être améliorée en itérant ${\it F}$ un ou plusieurs tours de plus :

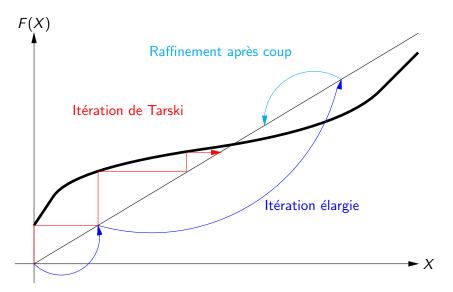
$$Y_0 = \text{un post point fixe} \qquad Y_{i+1} = F(Y_i)$$

Si F est croissante, chacun des Y_i est un post point fixe : $F(Y_i) \sqsubseteq Y_i$.

Souvent, $Y_i \sqsubset Y_0$, ce qui donne un meilleur résultat.

On peut stopper l'itération lorsque Y_i est un point fixe, ou à tout moment.

Élargissement plus raffinement en action

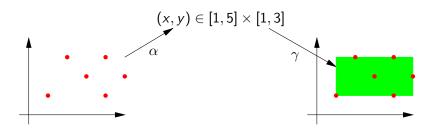


Idée trop belle pour être vraie : on peut calculer les opérateurs abstraits de manière systématique, correcte par construction, et optimale

Les correspondances de Galois

Un treillis $A, \sqsubseteq d$ 'états abstraits et deux fonctions :

- Fonction d'abstraction α : ensemble états concrets \rightarrow état abstrait
- Fonction de concrétisation γ : état abstrait \rightarrow ensemble états concrets



 α et γ croissantes; $X \subseteq \gamma(\alpha(X))$; et $x^{\#} \sqsubseteq \alpha(\gamma(x^{\#}))$.

Calculer les opérateurs abstraits

Pour chaque opération du langage, on peut calculer l'opération abstraite correspondante, de manière systématique.

Exemple : pour l'opérateur +, on définit

$$a_1 + a_2 = \alpha \{ n_1 + n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \}$$

Après, on simplifie dans cette définition jusqu'à obtenir un algorithme, p.ex.

$$[l_1, u_1] +^{\#} [l_2, u_2] = [l_1 + l_2, u_1 + u_2]$$

L'opérateur +# ainsi obtenu est :

- Correct par définition : si $n_1 \in \gamma(a_1)$ et $n_2 \in \gamma(a_2)$ alors $n_1 + n_2 \in \gamma(a_1 + a_2)$
- Le plus précis possible par rapport à notre choix de α .

Problèmes avec les correspondances de Galois

(en vue d'une implémentation Coq)

- 1- L'approche «calculatoire» est peu pratique en Coq (cf. stage DEA David Monniaux).
- 2- La fonction α est généralement non calculable Exemple des intervalles : $\alpha(X) = [\inf X, \sup X]$ où X est un ensemble possiblement infini de nombres.
- 3- La fonction α n'existe pas toujours Exemple des intervalles sur les rationnels :

$$\alpha\{x \in \mathbf{Q} \mid x^2 \le 2\} = [??,??]$$

(pas possible de prendre $[-\sqrt{2}, \sqrt{2}]$).

Idée piétonne : définir manuellement les opérateurs abstraits et les prouver corrects ensuite

Plan B

Oublions les α et l'optimalité. Focalisons-nous sur les γ et la correction.

$$\gamma: A o \mathcal{P}(C) \equiv A o C o \mathtt{Prop} \equiv C o A o \mathtt{Prop}$$

Chaque domaine abstrait vient avec une relation \in :

chose- $concrète \in chose$ -abstraite

Les opérateurs abstraits sont définis «au pif» ou par calcul sur papier, puis prouvés corrects ensuite :

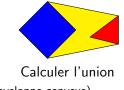
```
Definition aplus (a1 a2: A) : A := ...
```

Theorem aplus_sound: forall v1 a1 v2 a2, $v1 \in a1 \rightarrow v2 \in a2 \rightarrow (v1 + v2) \in (aplus \ a1 \ a2).$

Validation a posteriori

Certaines opérations abstraites peuvent être implémentées de manière non prouvées s'il est facile de valider leurs résultats a posteriori par un validateur prouvé correct.

Exemple : la borne supérieure ⊔ pour les polyèdres.



(enveloppe convexe)

Tester l'inclusion (formule de Presburger)

VS.

Validation a posteriori de l'opération ⊔

```
Parameter ajoin_impl: A -> A -> A.
Definition aincl_b (a1 a2: A) : A := ...
Theorem aincl b sound:
  forall v a1 a2, aincl_b a1 a2 = true \rightarrow v \in a1 \rightarrow v \in a2.
Proof. (* un peu de travail *) Qed.
Definition ajoin (a1 a2: A) : A :=
  let a := ajoin_impl a1 a2 in
  if aincl_b a1 a && aincl_b a2 a then a else top.
Theorem ajoin_sound:
  forall v a1 a2, v \in a1 v \in a2 \rightarrow v \in (ajoin a1 a2).
Proof. (* immédiat *) Qed.
```


Le polyèdre $A_1 \wedge \cdots \wedge A_n$ est inclus dans $B_1 \wedge \cdots \wedge B_m$ ssi la formule $A_1 \wedge \cdots \wedge A_n \Rightarrow B_1 \wedge \cdots \wedge B_m$ est toujours vraie ssi les formules $A_1 \wedge \cdots \wedge A_n \wedge \neg B_i$ sont insatisfiables.

Lemme (Farkas)

Un système d'inéquations linéaires $A_1 \wedge \cdots \wedge A_n$ est insatisfiable ssi il existe des coefficients k_1, \ldots, k_n tels que la combinaison linéaire $k_1A_1 + \cdots + k_nA_n$ est égale à $0 \ge 1$.

Algorithme:

- Faire calculer les coefficients k_i par une implémentation externe non prouvée du Simplex.
- Vérifier que $k_1A_1 + \cdots + k_nA_n \equiv (0 > 1)$.

Plan

- Introduction à l'analyse statique
- L'analyse statique par interprétation abstraite
- 3 Un peu de Coq : un interprète abstrait «pédagogique»
- 4 Passage à l'échelle : le projet Verasco
- Conclusion et travaux futurs

Un interprète abstrait pour Imp

Le mini-langage Imp de Software Foundations :

Arithmetic expressions:

$$a ::= n \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \times a_2$$

Boolean expressions:

$$b :=$$
true | false | $a_1 = a_2 \mid a_1 \le a_2 \mid$ | not $b \mid b_1$ and b_2

Commands (statements):

$$c ::= SKIP$$
 (do nothing)
 $| x ::= a$ (assignment)
 $| c_1; c_2$ (sequence)
 $| IFB \ b \ THEN \ c_1 \ ELSE \ c_2 \ FI$ (conditional)
 $| WHILE \ b \ DO \ c \ END$ (loop)

Notes de cours : *Proving a Compiler : Mechanized verification of program transformations and static analyses*, école d'été Oregon, 2010-2012, http://gallium.inria.fr/~xleroy/courses/Eugene-2012/.

Plan

- Introduction à l'analyse statique
- L'analyse statique par interprétation abstraite
- Un peu de Coq : un interprète abstrait «pédagogique»
- 4 Passage à l'échelle : le projet Verasco
- Conclusion et travaux futurs

Le projet Verasco

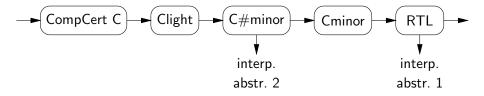
Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Objectif : développer et vérifier en Coq un analyseur statique par interprétation abstraite qui soit réaliste :

- Langage analysé : le sous-ensemble C de CompCert.
- Domaines abstraits non triviaux, incl. domaines relationnels.
- Architecture modulaire inspirée d'Astrée.
- Rapport d'alarmes.

Slogan : si «CompCert = 1/10e de GCC mais prouvé», de même «Verasco = 1/10e d'Astrée mais prouvé».

Couche haute : les interprètes abstraits



Se branchent sur les langages intermédiaires du compilateur CompCert.

Paramétrés par une domaine abstrait pour les états (environnement + état mémoire + pile d'appels).

- Interprète abstrait pour RTL (Blazy, Maronèze, Pichardie, SAS 2013) Contrôle non structuré → points fixes fonction par fonction, algorithme de Bourdoncle.
- Interprète abstrait pour C#minor (Jourdan, en cours)
 Points fixes locaux pour les boucles, par fonction pour les goto.

Couche basse : les domaines numériques «idéaux»

Non-relationnels:

- Intervalles entiers (sur Z).
- Congruences entières.
- Intervalles flottants (au dessus de la bibliothèque Flocq).

Relationnels:

- La bibliothèque VPL (Fouilhé, Monniaux, Périn, SAS 2013) : polyèdres à coefficients rationnels, implémentés en OCaml, avec production de certificats vérifiables en Coq.
- Intégration en cours dans Verasco.
 (Transparent suivant : l'interface d'un domaine relationnel idéal.)

```
Class ab_ideal_env (var t:Type) '{EqDec var}: Type := {
  id_wl:> weak_lattice t;
  id_gamma:> gamma_op t (var->ideal_num);
  id_adom:> adom t (var->ideal_num) id_wl id_gamma;
  get_itv: iexpr var -> t -> IdealIntervals.abs+\pmu;
  assign: var \rightarrow iexpr var \rightarrow t \rightarrow t+\perp;
  forget: var -> t -> t+\perp;
  assume: iexpr var -> bool -> t -> t+\(\perc \);
  get_itv_correct: forall e \rho ab,
    \rho \in \gamma ab ->
    eval_iexpr \rho e \subseteq \gamma (get_itv e ab);
  assign_correct: forall x e \rho n ab,
    \rho \in \gamma ab ->
    n \in eval\_iexpr \rho e \rightarrow
     (upd \rho x n) \in \gamma (assign x e ab);
  forget_correct: forall x \rho n ab,
    \rho \in \gamma ab ->
     (upd \rho x n) \in \gamma (forget x ab);
  assume_correct: forall c \rho ab b,
    \rho \in \gamma ab ->
     (INz (if b:bool then 1 else 0)) \in eval_iexpr \rho c ->
    \rho \in \gamma (assume c b ab)
}.
```

Transformateurs de domaines numériques

Domaine non-relationnel idéal \rightarrow domaine relationnel idéal :

- Pour assign: interp. abstraite des expressions
- Pour assume : interp. abstraite inverse.

Domaine relationnel idéal \rightarrow domaine relationnel «machine» :

- Idée : $x \in \mathbf{Z} \approx n \in \text{int ssi } n = z \mod 2^{32}$.
- Compatible avec addition, soustraction, multiplication.
- Pour les autres opérations (comparaisons, divisions, ...) : essayer de réduire l'entier idéal dans l'intervalle $[0,2^{32}[$ ou $[-2^{31},2^{31}[$ selon que l'opération est signée ou non.

Couche médiane : abstraction de la mémoire et des états

Le modèle mémoire CompCert : adresse mémoire = bloc $b \times$ offset δ .

$$b_1:$$
 $b_2:$ $b_3:$ $\delta_3:$

Abstraction des offsets \rightarrow domaine numérique.

Abstraction des blocs :

- Solution courante : 1 bloc concret = 1 bloc abstrait
 «variable globale x» ou «variable locale y de la fonction f».
- Récursion, allocation dynamique \rightarrow besoin de blocs abstraits imprécis (abstrayant plusieurs blocs concrets).
- Besoin de fusionner différents offsets d'un même bloc (gros tableau p.ex.).

Plan

- Introduction à l'analyse statique
- L'analyse statique par interprétation abstraite
- ③ Un peu de Coq : un interprète abstrait «pédagogique»
- Passage à l'échelle : le projet Verasco
- 5 Conclusion et travaux futurs

Travaux futurs

Beaucoup reste à faire pour atteindre un «vrai» analyseur statique :

- «Bonnes» approximations de la mémoire.
- Davantage de (combinaisons de) domaines abstraits : égalités symboliques, produits réduits, partitionnement de traces.
- Efficacité algorithmique :
 - Préservation du partage entre représentations d'états abstraits.
 - Repartage a posteriori (hash-consing?)
 - ▶ Domaines relationnels en O(N), N = nombre de variables. . . ⇒ partitionnement en groupes de $n \ll N$ variables.
- Rapport d'alarmes.
- Débugger la précision des analyses.

Petit à petit...

... on se rapproche d'une vérification formelle des outils intervenant dans la production et la vérification des logiciels embarqués critiques.

