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• 2002 : DEA sur les SugarCubes [Boussinot et Susini]

• 2002 :  Thèse sur la reconfiguration dynamique en Lucid Synchrone

• Fin 2003 : passage de Java à ML

• lien entre la partie réactive et langage hôte

• simplification de l’implantation

• 2002 - 2003 : Implantations de SugarCubes (Junior)

• Inspiration en particulier de Junior par L. Hazard



Approche langages

• fournir des constructions de haut niveau pour composer/décrire

des systèmes interactifs

• alternative aux approches classiques :

impérative, programmation événementielle, concurrente (à base de

thread), ...

• la question de l’efficacité est centrale, il n’y a pas de threads à

l’exécution

• mécanismes de sûreté (e.g., typage)

• parallélisme déterministe

• s’intégrer a un langage existant (Ocaml) sans réduire son pouvoir

expressif

On fonde ce langage sur le modèle réactif introduit par F. Boussinot
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des systèmes interactifs

• alternative aux approches classiques :

impérative, programmation événementielle, concurrente (à base de
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• s’intégrer a un langage existant (Ocaml) sans réduire son pouvoir
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3



Analyse de réactivité

8

Boucle instantanée

Récursion instantanée



Approche langages

• fournir des constructions de haut niveau pour composer/décrire
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Programming Mixed 
Music in ReactiveML

• Collaboration entre

• l’équipe Mutant de l’IRCAM

• l’équipe Parkas de l’ENS
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Anthèmes II (1994)

New version using antescofo (2008)
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The Antescofo Language
Goal: Jointly specify electronic and instrumental parts



NOTE   60   1.0
0.0   'a_0'

NOTE   62   1.0
0.5   GROUP   loose  causal
        {  0.0   'a_1'
           1.0   'a_2'
           1.0   'a_3'  }

NOTE   64   2.0
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a0
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Figure 3. Representation of an Antescofo score. Musical notes
correspond to the musician’s part and the rest to electronic actions.

This process can also be written with a parallel loop:

let process round =
for i = 0 to 3 dopar
run (delayed theme (float (i*8)))

done
val round: unit process

or, using a recursive process taking the number of voices as an
argument.

let rec process round nb_voices =
if nb_voices <= 0 then ()
else begin
run theme ||
run (delayed (round (nb_voices - 1)) 8.0)

end
val round: int -> unit process

We are now able to describe and execute electronic music in
ReactiveML. But what about mixed music?

3. Toward Mixed Music
Mixed music is about interaction between a live musician and elec-
tronic parts.✏ The Antescofo language [9] allows a composer to
specify electronic parts and how they interact with musicians dur-
ing a performance. This language is the result of a close collabora-
tion between composers and computer scientists. Figure 3 shows a
graphical representation of a very simple Antescofo score.

3.1 Relative Time in Music
In most classical western scores, durations and delays are expressed
relative to the tempo i.e., the execution speed expressed in beats per
minute (bpm). On the example of Figure 3, the duration of the first
two notes is set to 1.0 beat, i.e., a quarter note. If the current tempo
is 60 bpm it means 1s, but 0.5s if the tempo is 120 bpm. Musicians
are free to interpret a score with a moving tempo. Indeed, in classi-
cal western music, tempo is one of the most prominent degrees of
freedom for interpretation. It partially explains the huge difference
between a real interpretation by a live musician and an automatic
execution of the same score by a computer.

One of the main features of the Antescofo system is tempo in-
ference. During a performance, the listening machine decodes both
the position in the score and the execution speed. The tempo is not
estimated from the last duration alone but rather from all durations
detected since the beginning of the performance. In this way, the
listening machine adds some inertia to tempo changes which cor-
responds to the real behavior of musicians playing together [5, 15].

3.2 The Antescofo language
In this framework, the most basic electronic actions, called atomic
actions are simple control messages destined for the audio envi-
ronment. Unlike traditional musical notes, atomic actions are in-

stantaneous; they are not characterized by a duration but by the de-
lay needed before their activation. Moreover, delays between elec-
tronic actions, like note durations, can be specified in relative time.
Thus, electronic parts can follow the speed of the live performer as
a trained musicians would.

Sequences of electronic actions are linked to an instrumental
event, the triggering event. For instance, in Figure 3, action a0 is
bound to the first note with a delay of 0.0. When the first note is
detected, action a0 is sent immediately.

Actions can be regrouped into structures called groups. Groups
are treated as atomic actions and are bound to an instrumental event
and characterized by a delay. On the example of Figure 3, a group
containing a sequence of three actions is bound to event e2.

Furthermore, groups can be arbitrarily nested. It allows to faith-
fully capture the hierarchical structure of a musical piece. Actions
contained in a nested group are executed in parallel with the actions
following them in the embedding group, not in sequence.

A score can be described with the following types:

type score_event =
{ event : instr_event_label;

seq : sequence; }

and sequence = delay * asco_event list

and asco_event =
| Action of action
| Group of group

and action =
| Message of audio_message
| Signal of (unit, unit list) event

and group =
{ group_synchro: sync;
group_error: err;
group_seq: sequence }

and sync = Tight | Loose
and err = Local | Global | Causal | Partial

The type score_event represents a sequence of electronic
actions seq bound to an instrumental event event. A sequence is
just a list of electronic actions characterized by a delay relative to
the tempo (see Section 3.1).

Atomic actions can be either simple control messages destined
to the audio environment, Message, or classic ReactiveML signals
to control other processes, Signal. ReactiveML signals are useful
to couple the electronic accompaniment with other reactive pro-
cesses (see Section 5).

The problem is that during a performance, the computer is sup-
posed to act as a trained musician, following the other performers.
Thus, the specification of mixed music scores faces two major chal-
lenges:

• During a live performance a musician can make a mistake, or
worse, the listening machine may fail to recognize an event. In
both cases, an expected event is missing. But what happens to
actions bound to this event?

• Sometimes, a sequence of actions bound to an instrumental
event may last longer than the duration of the triggering event.
For instance, on our example, actions a2 and a3 should occur
after event e3 although they are triggered by event e2. In this
case, the question is: how should an electronic part synchronize
with instrumental event that occur during its execution?

• Time is relative to the tempo

• Electronic actions are characterized by a delay

• Hierarchical structure: groups and nested groups

• Synchronization with the musician : tight, loose

• Error handling strategies : partial, causal

[Echeveste et al. 2012]
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Live Coding
Modify, correct and interact with the score 

during the performance
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Figure 5. Score of the house of the rising sun (classical folk song)

let only_roots chords octave dur =
List.map
(fun (delay, chord) ->

let root = root_of_chord chord octave in
(delay, action_note (dur, root)))

chords
val only_roots:

(delay * chord) list -> octave -> dur -> sequence

Given an octave, the function root_of_chord returns the pitch
corresponding to the root of a chord. Then, the function only_roots
defines the sequence of electronic actions corresponding to the
roots of a sequence of chords, chords. Function action_note
converts a note into an atomic action destined for the audio envi-
ronment (a value Action message where the message contains
the characteristics of the note).

Remark that in Figure 5, no octave is specified on the score for
the bass. We choose to instantiate the bass with the octave set to 3
(i.e., the first root of the bass is set to A3 = 220 Hz) and the duration
to 2.0 beats which corresponds to the delay between two chords.

let roots = only_roots bass 3 2.0
val roots: sequence

The next thing to do is to build the link between the in-
strumental part and the electronic accompaniment. The process
link asco evt seq links a sequence of actions seq to an instru-
mental event evt, in the environment asco. This process waits for
the event to be detected or missed and it triggers the sequence. For
instance, on the example of Figure 5, the first chord is bound to the
second instrumental event. We can link the sequence roots to this
event to obtain a basic accompaniment.

let process basic_accomp =
run (link asco 2 roots)

val basic_accomp: unit process

If the performer does not play at constant speed, the accompa-
niment part may become desynchronized at some point. We can
easily avoid this behavior if we put the bass line inside a Tight
group (see Section 3.4). Moreover, it allows us to specify an error-
handling strategy for the accompaniment. In our case, if an instru-
mental event is missed we do not want to hear the associated chord.
Therefore we use the Partial strategy (see Section 3.3).

let process tight_accomp =
let g = group Tight Partial roots in
run (link asco 2 [(0.0, g)])

val tight_accomp: unit process

Here, the function group sync err seq is a simple constructor
for a group with attributes sync and err containing the sequence
of actions seq.

Note that the sequence bound to the second instrumental event
contains only one zero delay electronic action: the group that de-
fines the entire accompaniment. When this instrumental event is

detected, each chord of the accompaniment is linked to its closest
preceding instrumental event.

The last thing to do is to launch the listening machine and the
reactive accompaniment.

let process main =
run (init_asco asco);
begin

run (listener asco) ||
run (tight_accomp) ||
run (sender asco)

end
val main: unit process

It first initializes the environment. Then, the process listener
links the listening machine of Antescofo to the environment. In
parallel, it executes the accompaniment part, and sends it to the
audio environment sender asco.

4.2 Hierarchical structure
The harmonization defined above is a bit minimalist. One solution
could be to add several other voices following the previous method.
But we can do better.

In the original song, the accompaniment is made with arpeg-
gio over the bass line. Thanks to functional composition, such an
accompaniment is very easy to define.

First, we define the arpeggio style we want to apply:

let arpeggio chord octave =
let fond = root_of_chord chord octave in
let third =

match color with
| Min -> move_pitch 3 fond
| Maj -> move_pitch 4 fond

in
let fifth = move_pitch 7 fond in
let dur = 0.125 in
group Loose Local

[0.0, action_note (dur, fond);
0.625, action_note (dur, third);
0.125, action_note (dur, fifth);
0.125, action_note (dur, move_octave 1 fond);
0.125, action_note (dur, move_octave 1 third);
0.333, action_note (dur, move_octave 1 fond);
0.333, action_note (dur, fifth);]

val arpeggio : chord -> octave -> asco_event

An arpeggio corresponds to a Loose Local group. Thus, an
arpeggio related to a missing event is entirely dismissed (Local).
Besides, the synchronization strategy preserves the rhythm of
the arpeggio (Loose). The function move_octave is similar to
move_pitch and shift the pitch a given number of octaves.

The house of the rising sun

• Functional programming
modular definition of the accompaniment

• Reactive programming
interaction with the score during the performance
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Figure 4. Illustration of the four error-handling attributes on a
simple score (on top). e1 and e2 represent instrumental events.
Suppose that e1 is missed and e2 is detected.

Error-handling and synchronization strategies depend very
much on the musical context. The Antescofo language proposes
solutions to reflect different musical behaviors. Groups are char-
acterized by two attributes [6], a synchronization attribute (see
Section 3.4) and an error handling attribute (see Section 3.3).

3.3 Error handling
The error-handling attribute defines the behavior of the group when
the expected triggering event is absent. There are several ways to
deal with errors depending on the musical context. We present here
four exclusive error handling strategies: Partial, Causal, Local
and Global. Figure 4 illustrates the four different behaviors.

The most basic accompaniment is perhaps a simple harmoniza-
tion of the musician’s voice. In this case, if a triggering event is
missed, electronic part must keep on going as if the error never oc-
curred. This is, for instance, the behavior of a pianist accompanying
a beginner. Thus, attributes Partial and Causal aim to preserve
a simple property: the future of a performance does not depend on
past errors.

Now, the question is: what about actions that should already
have been launched when the error was detected? If the error-
handling attribute is set to Partial, these actions are simply dis-
carded. On the other hand, if the error handling-attribute is set
to Causal, these actions are immediately launched. This strategy
could be useful if some actions are used to initialize an external
process, e.g., turn on the light.

Moreover, a group can be used to define a complex control unit,
e.g, parameters needed to synthesized the sound of a gong. Then,
the integrity of the group must be preserved. Thus, when an error is
detected, Global groups are launched with a zero delay, whereas
Local groups are completely ignored.

3.4 Synchronization Strategies
A composer is allowed to specify how actions contained in a group
will synchronize with instrumental events that occur during the ex-
ecution of the group. Currently, the language proposes two distinct
strategies: Tight and Loose.

If the synchronization attribute is set to Tight, every action con-
tained in the group is triggered by the most recent corresponding in-
strumental event. The nearest event is computed with respect to the
ideal timing of the score regardless of tempo changes. This strat-
egy is ideal when electronic parts and the musician must remain
as synchronous as possible, e.g., if an electronic voice is a simple
harmonization of the performer’s part. In the example of Figure 3,
if the group has a synchronization attribute set to Tight, actions
a2 and a3 will be triggered by e3 even though the entire group is
bound to the second instrumental event.

The strategy Loose allows the composer to define groups that,
once triggered, only synchronize with the tempo. Due to the inertia
of the tempo inference, an electronic action contained in such a
group and an instrumental event that seems to be simultaneous in
the score may be desynchronized during the performance. Indeed,
a performer may accelerate or decelerate between two events. This
strategy is used to preserve temporal relations between actions
contained in the group. For instance, it can be very useful when
the electronic part is treated as an independent background sound.

4. A First Example: The house of the rising sun
As a first example, let us take a classical folk song, The house of
the rising sun. The score is presented in Figure 5. In this example,
we want to define an electronic accompaniment which follows the
main theme played by a real musician.✏

First, we need to create and initialize the asco environment
that contains the instrumental score. This environment allows us to
manage inputs from the listening machine and the outputs destined
for the audio environment.

let asco = create_asco "rising_sun.asco" 120.
val asco: Ascolib.asco

To create the environment, we need the instrumental score of the fu-
ture performance, here "rising_sun.asco" and an initial tempo,
typically 120 bpm.

4.1 The basics
The accompaniment is roughly described in the score by a sequence
of chords: Am, C, D. . . bound to instrumental events. For instance,
the first chord is related to the second instrumental event, the
second to the fourth one and so on.

First, we need a symbolic description of chords. Like pitch
describe in Section 2.1, a chord is characterized by a pitch class:
A, C, D... and a color: major or minor.

type color = Maj | Min
type chord = pitch_class * color

We can define the bass line of our example as a sequence of
chords characterized by a delay:

let bass = [0.0, (A, Min); 2.0, (C, Maj); ...]
val bass: (delay * chord) list

Then, we need to turn this sequence of chords into a sequence
of electronic actions. Perhaps the most simple accompaniment is to
play only the roots of the bass line.

let root_of_chord chord octave =
let (pitch_class, color) = chord in
(pitch_class, octave)

val root_of_chord: chord -> octave -> pitch

let arpeggio chord =

...

group Loose Local

[0.0, action_note (fond);

1.0, action_note (third);

2.0, action_note (fifth);}]

val arpeggio: chord -> asco_event
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let only_roots chords octave dur =
List.map
(fun (delay, chord) ->

let root = root_of_chord chord octave in
(delay, action_note (dur, root)))

chords
val only_roots:

(delay * chord) list -> octave -> dur -> sequence

Given an octave, the function root_of_chord returns the pitch
corresponding to the root of a chord. Then, the function only_roots
defines the sequence of electronic actions corresponding to the
roots of a sequence of chords, chords. Function action_note
converts a note into an atomic action destined for the audio envi-
ronment (a value Action message where the message contains
the characteristics of the note).

Remark that in Figure 5, no octave is specified on the score for
the bass. We choose to instantiate the bass with the octave set to 3
(i.e., the first root of the bass is set to A3 = 220 Hz) and the duration
to 2.0 beats which corresponds to the delay between two chords.

let roots = only_roots bass 3 2.0
val roots: sequence

The next thing to do is to build the link between the in-
strumental part and the electronic accompaniment. The process
link asco evt seq links a sequence of actions seq to an instru-
mental event evt, in the environment asco. This process waits for
the event to be detected or missed and it triggers the sequence. For
instance, on the example of Figure 5, the first chord is bound to the
second instrumental event. We can link the sequence roots to this
event to obtain a basic accompaniment.

let process basic_accomp =
run (link asco 2 roots)

val basic_accomp: unit process

If the performer does not play at constant speed, the accompa-
niment part may become desynchronized at some point. We can
easily avoid this behavior if we put the bass line inside a Tight
group (see Section 3.4). Moreover, it allows us to specify an error-
handling strategy for the accompaniment. In our case, if an instru-
mental event is missed we do not want to hear the associated chord.
Therefore we use the Partial strategy (see Section 3.3).

let process tight_accomp =
let g = group Tight Partial roots in
run (link asco 2 [(0.0, g)])

val tight_accomp: unit process

Here, the function group sync err seq is a simple constructor
for a group with attributes sync and err containing the sequence
of actions seq.

Note that the sequence bound to the second instrumental event
contains only one zero delay electronic action: the group that de-
fines the entire accompaniment. When this instrumental event is

detected, each chord of the accompaniment is linked to its closest
preceding instrumental event.

The last thing to do is to launch the listening machine and the
reactive accompaniment.

let process main =
run (init_asco asco);
begin

run (listener asco) ||
run (tight_accomp) ||
run (sender asco)

end
val main: unit process

It first initializes the environment. Then, the process listener
links the listening machine of Antescofo to the environment. In
parallel, it executes the accompaniment part, and sends it to the
audio environment sender asco.

4.2 Hierarchical structure
The harmonization defined above is a bit minimalist. One solution
could be to add several other voices following the previous method.
But we can do better.

In the original song, the accompaniment is made with arpeg-
gio over the bass line. Thanks to functional composition, such an
accompaniment is very easy to define.

First, we define the arpeggio style we want to apply:

let arpeggio chord octave =
let fond = root_of_chord chord octave in
let third =

match color with
| Min -> move_pitch 3 fond
| Maj -> move_pitch 4 fond

in
let fifth = move_pitch 7 fond in
let dur = 0.125 in
group Loose Local

[0.0, action_note (dur, fond);
0.625, action_note (dur, third);
0.125, action_note (dur, fifth);
0.125, action_note (dur, move_octave 1 fond);
0.125, action_note (dur, move_octave 1 third);
0.333, action_note (dur, move_octave 1 fond);
0.333, action_note (dur, fifth);]

val arpeggio : chord -> octave -> asco_event

An arpeggio corresponds to a Loose Local group. Thus, an
arpeggio related to a missing event is entirely dismissed (Local).
Besides, the synchronization strategy preserves the rhythm of
the arpeggio (Loose). The function move_octave is similar to
move_pitch and shift the pitch a given number of octaves.

1. Define the bass line

2. Define the accompaniment style 

3. Link with the performance
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Example of a higher-order process

let process simple a b =

(await a; print "a")

||

(await b; print "b")

val simple:

(unit, unit) event -> (unit, unit) event ->

unit process

let process killable k p =

do

run p

until k done

val killable:

(unit, unit) event -> unit process ->

unit process

let process replaceable replace p =

do

run p

until replace (q) ->

run (replaceable q)

done

val replaceable:

(unit process, unit process) event ->

unit process -> unit process

1
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Example of a higher-order process

control signal

process

let process simple a b =

(await a; print "a")

||

(await b; print "b")

val simple:

(unit, unit) event -> (unit, unit) event ->

unit process

let process killable k p =

do

run p

until k done

val killable:

(unit, unit) event -> unit process ->

unit process

let process replaceable replace p =

do

run p

until replace (q) ->

run (replaceable q)

done

val replaceable:

(unit process, unit process) event ->

unit process -> unit process
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Example of a recursive higher-order process

let process simple a b =

(await a; print "a")

||

(await b; print "b")

val simple:
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(unit process, unit process) event ->

unit process -> unit process
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Example of a recursive higher-order process
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process

new behavior
signal can carry processes

Example of a recursive higher-order process

signal

let process simple a b =
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||
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Example: Steve Reich’s Piano Phase

New Reactive Behaviors



Piano Phase ...
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Synchronization
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Piano Phase ...

Problem:
We do not want to compute a priori 
when resynchronizations will occur
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Bob



... in Mixed Music
Live musician

Plays the constant speed part

Synchronization

Desynchronization

Electronic
Handles the desynchronization

Tempo

Position

Listening Machine
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Electronic
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Tempo

Position

Listening Machine
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AliceBob

• Play slightly faster

• Track the first note of Bob

• Resynchronize when the k-th note of Alice 
is close enough of the first note of Bob



Implementation
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Two phases:
Synchronization 

Desynchronization



Implementation

Play the melody four times 
and follow the tempo

Synchronization

Emit the signal desync after 
four iterations of the melody
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Implementation

Play slightly faster
and emit the signal first_note 
whenever the first note is played

Track the k-th note of the musician

Compare the emission of signals 
kth_note and first_note and emit 
sync when they are close enough

Desynchronization
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Retour sur les choix

• Choix du langage hôte

• Choix du modèle de concurrence 

• Choix de faire un langage
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encore une démo
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http://reactiveml.org

http://reactiveml.org
http://reactiveml.org

