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Introduction



Software Verification

Software bugs can be costly... and testing is not enough!
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Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

D♯ (abstract)

γ
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Abstract interpretation
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Bad states

D (concrete)
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Bad states

D♯ (abstract)

γ

✗ True alarm
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Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

Bad states

D♯ (abstract)

γ

✗ False alarm (too unprecise)
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Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y
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Functional programming



Functional programming

New features to handle!

□ Recursivity

□ Algebraic Data Types

□ Pattern-matching

□ Higher Order

□ Polymorphism
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Functional programming

New features to handle!

□✓ Recursivity

□✓ Algebraic Data Types

□✓ Pattern-matching

□✗ Higher Order

□✗ Polymorphism

4



Motivating example

type list = Cons of int * list | Nil

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

• This program is well-typed, but it does not prove the assertion.

• Deductive methods would require annotations.

What about static analysis by abstract interpretation?
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State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language
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Domains for algebraic data



Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})
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Algebraic Data Types

type t =
| C1 of t1,1 * ... * t1,n_1
| ...
| Cm of tm,1 * ... * tn,n_m

We choose as an abstract domain:

Dt =
∏

1≤i≤n
1≤j≤ni

D⊥
i ,j × P(C)

• We summarize non-recursive field i , j accessible from x : t in one variable x .i .j

• We summarize each recursive field by the set of constructors accessible from it.
• We keep track of x ’s constructor.
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Transfer function: pattern-matching

match e with | p1 -> e1 | ... | pn -> en

We proceed iteratively:

• We evaluate ei in an over-approximation of environments where e and pi match.

• We remove pi pattern and evaluate the result matching in one such that they can’t.

• We join the results.

This method is flow sensitive and able to handle when clauses.
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Transfer function: pattern-matching

match Cons(1, Nil) with
| Cons(h,q) -> h
| Nil -> 0

• Cons(1, Nil) and Cons(h, q) match in environments where h = 1. Then h

evaluates to 1.

• There is no remaining environment for the second pattern.

• Then the result is 1.
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Functions



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.

• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function

• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11



Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.
11



Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.
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The analysis on our example



Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h
| Nil -> 0

We abstract the right hand side.
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Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.
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Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

x : ((x.Cons.0:[1, 2], x.Cons.1:{Nil, Cons}), {Cons})
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Implementation



MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer
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OCaml Analysis

We performed the following implementation steps:

✓ Injecting OCaml typed AST into MOPSA AST
✓ Designing domains for algebraic values and non-recursive functions
✓ Implementing transfer functions for all other constructs (let, type declarations,

pattern-matching, etc.)

It represents about 2000 lines of OCaml, tested on a few dozens of toy programs, and
still has limitations:

✗ Implementation to complete (recursive functions)
✗ Polymorphism, Higher-order
✗ Impure features (mutable arrays, references)
✗ But also modules, functors...
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Experimental results

Program Lines Time (s)
list.ml 4 0.003
tree.ml 2 0.005
match.ml 6 0.004

match_alarm.ml 6 0.005
match_error.ml 6 0.004

add.ml 3 0.004

Figure 1: Execution time on a few toy programs
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Conclusion



Conclusion

• A static value analysis for a first-order functional language

• Design of a relational domain for algebraic values

• Implementation into MOPSA platform

• Paving the way towards an analyzer for a higher-order functional language
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Further works

• Add support for higher order and polymorphism

• Extend to an impure fragment

• Make the implementation scalable!

• Towards higher-order information: length, depth, or even more sophisticated
properties (sort, balance)

20



Thank you for your attention



Polymorphism and higher-order

For polymorphism, we may:

• Analyze the function for each type instance encountered

• Develop equality and inequality domains for polymorphic data

For higher-order, we may:

• Analyze the function for each function summary in argument

• For numeric information, generalize the current analysis (functions and values are
just points of numeric domains)

But we would need new methods for structural information on algebraic values.
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Impure features

We’d like to support arrays, references and mutable fields.

• Identify impure variables with types and abstract them to ⊤
• Give them as imputs to every functions

• Identify functions where impure variables don’t escape to reduce the cost
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