
Static Value Analysis by Abstract Interpretation
for Functional Programs manipulating
Recursive Algebraic Data Types

Milla Valnet1,3, Raphaël Monat2, Antoine Miné3

JFLA 2023

1ENS Ulm, 2Inria Lille, 3Sorbonne Université

Introduction

Software Verification

Software bugs can be costly... and testing is not enough!

1

Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

D♯ (abstract)

γ

2

Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

Bad states

D♯ (abstract)

γ

✓ Program correct

2

Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

Bad states

D♯ (abstract)

γ

✗ True alarm

2

Abstract interpretation

SJ prog K

Bad states

D (concrete)

S#J prog K

Bad states

D♯ (abstract)

γ

✗ False alarm (too unprecise)

2

Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y

3

Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y

3

Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y

3

Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y

3

Domains and relationality

x = 0 ; y = 1 ;
while (y < 1000){

if (rand(0,1) == 0) { x++; } else { x--; } ;
y++; }

Interval domain :

• D = P(Z)× P(Z), D♯ = { [a, b] }2

• y → [1000, 1000], x ∈]−∞,+∞[

Polyhedra domain :

• D = P(Zn), D♯ = {
∧
j≤m

(
∑n

i=1 ai ,jVi ≥ βj) }

• y = 1000, −y < x < y

3

Functional programming

Functional programming

New features to handle!

□ Recursivity

□ Algebraic Data Types

□ Pattern-matching

□ Higher Order

□ Polymorphism

4

Functional programming

New features to handle!

□ Recursivity

□ Algebraic Data Types

□ Pattern-matching

□ Higher Order

□ Polymorphism

4

Functional programming

New features to handle!

□ Recursivity

□ Algebraic Data Types

□ Pattern-matching

□ Higher Order

□ Polymorphism

4

Functional programming

New features to handle!

□✓ Recursivity

□✓ Algebraic Data Types

□✓ Pattern-matching

□✗ Higher Order

□✗ Polymorphism

4

Motivating example

type list = Cons of int * list | Nil

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

• This program is well-typed, but it does not prove the assertion.

• Deductive methods would require annotations.

What about static analysis by abstract interpretation?

5

Motivating example

type list = Cons of int * list | Nil

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

• This program is well-typed, but it does not prove the assertion.

• Deductive methods would require annotations.

What about static analysis by abstract interpretation?

5

Motivating example

type list = Cons of int * list | Nil

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

• This program is well-typed, but it does not prove the assertion.

• Deductive methods would require annotations.

What about static analysis by abstract interpretation?

5

Motivating example

type list = Cons of int * list | Nil

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

• This program is well-typed, but it does not prove the assertion.

• Deductive methods would require annotations.

What about static analysis by abstract interpretation?

5

State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language

6

State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language

6

State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language

6

State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language

6

State of the art

For imperative and object-oriented languages, we have mature static value analyzers.

For functional languages:

• Type systems and deductive methods: SAT/SMT solvers, annotations

• Abstract interpreters for CFA, termination analysis, etc.: no value analysis

• Bautista et al. [2022]: domain for non recursive algebraic values

• Jhala et al. [2011]: HMC, translation into an imperative language

6

Domains for algebraic data

Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})

7

Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})

7

Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})

7

Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})

7

Algebraic Data Types

type list = Cons of int * list | Nil

let x = Cons(1, Cons(2, Cons(3, Nil)))

» ((x.Cons.0:[1, 3], x.Cons.1:{Nil, Cons}), {Cons})

let y = Nil

» ((y.Cons.0: ⊥, y.Cons.1: ⊥), {Nil})

let z = Cons(4, x)

» ((z.Cons.0:[1, 4], z.Cons.1:{Nil, Cons}), {Cons})

7

Algebraic Data Types

type t =
| C1 of t1,1 * ... * t1,n_1
| ...
| Cm of tm,1 * ... * tn,n_m

We choose as an abstract domain:

Dt =
∏

1≤i≤n
1≤j≤ni

D⊥
i ,j × P(C)

• We summarize non-recursive field i , j accessible from x : t in one variable x .i .j

• We summarize each recursive field by the set of constructors accessible from it.
• We keep track of x ’s constructor.

8

Algebraic Data Types

type t =
| C1 of t1,1 * ... * t1,n_1
| ...
| Cm of tm,1 * ... * tn,n_m

We choose as an abstract domain:

Dt =
∏

1≤i≤n
1≤j≤ni

D⊥
i ,j × P(C)

• We summarize non-recursive field i , j accessible from x : t in one variable x .i .j

• We summarize each recursive field by the set of constructors accessible from it.
• We keep track of x ’s constructor.

8

Transfer function: pattern-matching

match e with | p1 -> e1 | ... | pn -> en

We proceed iteratively:

• We evaluate ei in an over-approximation of environments where e and pi match.

• We remove pi pattern and evaluate the result matching in one such that they can’t.

• We join the results.

This method is flow sensitive and able to handle when clauses.

9

Transfer function: pattern-matching

match e with | p1 -> e1 | ... | pn -> en

We proceed iteratively:

• We evaluate ei in an over-approximation of environments where e and pi match.

• We remove pi pattern and evaluate the result matching in one such that they can’t.

• We join the results.

This method is flow sensitive and able to handle when clauses.

9

Transfer function: pattern-matching

match Cons(1, Nil) with
| Cons(h,q) -> h
| Nil -> 0

• Cons(1, Nil) and Cons(h, q) match in environments where h = 1. Then h

evaluates to 1.

• There is no remaining environment for the second pattern.

• Then the result is 1.

10

Transfer function: pattern-matching

match Cons(1, Nil) with
| Cons(h,q) -> h
| Nil -> 0

• Cons(1, Nil) and Cons(h, q) match in environments where h = 1. Then h

evaluates to 1.

• There is no remaining environment for the second pattern.

• Then the result is 1.

10

Transfer function: pattern-matching

match Cons(1, Nil) with
| Cons(h,q) -> h
| Nil -> 0

• Cons(1, Nil) and Cons(h, q) match in environments where h = 1. Then h

evaluates to 1.

• There is no remaining environment for the second pattern.

• Then the result is 1.

10

Transfer function: pattern-matching

match Cons(1, Nil) with
| Cons(h,q) -> h
| Nil -> 0

• Cons(1, Nil) and Cons(h, q) match in environments where h = 1. Then h

evaluates to 1.

• There is no remaining environment for the second pattern.

• Then the result is 1.

10

Functions

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.

• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function

• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.

11

Functions

let f = fun x -> match x with (a,b) -> a + b

A function is abstracted as a relation between the inputs and the output.

• We initialize x : (x .0, x .1) with x .0 and x .1 to ⊤.
• We analyze the body of the function
• We deduce the relation between the result and x .

Here, we have: f : x → x .0 + x .1.

f (42, 12)

For application, we instantiate the input variables in the relation abstracting f by the
abstraction of arguments.

Here, we instantiate x : (x .0, x .1) by (42, 12) so we get x .0 + x .1 = 42 + 12 = 54.
11

Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.

12

Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.

12

Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.

12

Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.

12

Recursivity

let rec f = fun x1 ... xn -> e in

For recursive functions, their concrete semantics is computed with a fixpoint, so their
abstract semantics will use iterations, with a widening application.

• We start with f : x1 → ... → xn → ⊥ with xi to ⊤.

• We evaluate the body of the function with this hypothesis and get a more precise
abstraction for f .

• We iterate the body evaluation with this new hypothesis.

• We ensure convergence in finite time by widening.

12

The analysis on our example

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h
| Nil -> 0

We abstract the right hand side.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h
| Nil -> 0

We abstract the right hand side.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.

We create variable l : ((l .Cons.0, l .Cons.1), lcons).

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

• l and Cons(h, q) match when lcons = {Cons} and l .Cons.0 = h, then the result is
l .Cons.0

• l and Nil match when lcons = {Nil}, then the result is 0.

• The result is 0 ∪Z l .Cons.0

We can summarize the function hd : l → 0 ∪Z l .Cons.0.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

• l and Cons(h, q) match when lcons = {Cons} and l .Cons.0 = h, then the result is
l .Cons.0

• l and Nil match when lcons = {Nil}, then the result is 0.

• The result is 0 ∪Z l .Cons.0

We can summarize the function hd : l → 0 ∪Z l .Cons.0.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

• l and Cons(h, q) match when lcons = {Cons} and l .Cons.0 = h, then the result is
l .Cons.0

• l and Nil match when lcons = {Nil}, then the result is 0.

• The result is 0 ∪Z l .Cons.0

We can summarize the function hd : l → 0 ∪Z l .Cons.0.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

• l and Cons(h, q) match when lcons = {Cons} and l .Cons.0 = h, then the result is
l .Cons.0

• l and Nil match when lcons = {Nil}, then the result is 0.

• The result is 0 ∪Z l .Cons.0

We can summarize the function hd : l → 0 ∪Z l .Cons.0.

13

Example 1 - Non recursive function

let hd = fun l -> match l with
| Cons(h,q) -> h

| Nil -> 0

We abstract the right hand side.
We create variable l : ((l .Cons.0, l .Cons.1), lcons).

• l and Cons(h, q) match when lcons = {Cons} and l .Cons.0 = h, then the result is
l .Cons.0

• l and Nil match when lcons = {Nil}, then the result is 0.

• The result is 0 ∪Z l .Cons.0

We can summarize the function hd : l → 0 ∪Z l .Cons.0.

13

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.

We iteratively analyze the body.

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)
| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. We analyze the pattern-matching:
• With lcons = {Cons}, l .Cons.0 = h, we get

((r .Cons.0 : 2 × l .Cons.0 ∪♯ ⊥,⊥), {Cons})
• With lcons = {Nil}, we get ((r .Cons.0 : ⊥,⊥), {Nil})
• By join, we have : ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. We analyze the pattern-matching:

• With lcons = {Cons}, l .Cons.0 = h, we get
((r .Cons.0 : 2 × l .Cons.0 ∪♯ ⊥,⊥), {Cons})

• With lcons = {Nil}, we get ((r .Cons.0 : ⊥,⊥), {Nil})
• By join, we have : ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. We analyze the pattern-matching:
• With lcons = {Cons}, l .Cons.0 = h, we get

((r .Cons.0 : 2 × l .Cons.0 ∪♯ ⊥,⊥), {Cons})

• With lcons = {Nil}, we get ((r .Cons.0 : ⊥,⊥), {Nil})
• By join, we have : ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. We analyze the pattern-matching:
• With lcons = {Cons}, l .Cons.0 = h, we get

((r .Cons.0 : 2 × l .Cons.0 ∪♯ ⊥,⊥), {Cons})
• With lcons = {Nil}, we get ((r .Cons.0 : ⊥,⊥), {Nil})

• By join, we have : ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. We analyze the pattern-matching:
• With lcons = {Cons}, l .Cons.0 = h, we get

((r .Cons.0 : 2 × l .Cons.0 ∪♯ ⊥,⊥), {Cons})
• With lcons = {Nil}, we get ((r .Cons.0 : ⊥,⊥), {Nil})
• By join, we have : ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})

2. By analyzing the pattern again, we get:
((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons}) ∪♯((⊥,⊥), {Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})
2. By analyzing the pattern again, we get:

((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons})

∪♯((⊥,⊥), {Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})
2. By analyzing the pattern again, we get:

((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons}) ∪♯((⊥,⊥), {Nil})

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})
2. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})

3. By analyzing the pattern again, we get the same result: this is a fixpoint.

Then mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil}).

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})
2. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})
3. By analyzing the pattern again, we get the same result: this is a fixpoint.

Then mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil}).

14

Example 2 - Recursive function

let rec mult2 = fun l -> match l with
| Cons(h,q) -> Cons(2*h, mult2 q)

| Nil -> Nil

We initialize mult2 : ((l .Cons.0, l .Cons.1), lcons) → ⊥.
We iteratively analyze the body.

1. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0,⊥), {Cons, Nil})
2. mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})
3. By analyzing the pattern again, we get the same result: this is a fixpoint.

Then mult2 : l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil}).

14

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

x : ((x.Cons.0:[1, 2], x.Cons.1:{Nil, Cons}), {Cons})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

x : ((x.Cons.0:[1, 2], x.Cons.1:{Nil, Cons}), {Cons})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)

mult2: l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})

x: (([1,2], {Cons, Nil}), {Cons})

=⇒ r1 : (r1.Cons.0 : [2, 4], {Cons, Nil}), {Cons, Nil})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)mult2: l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})

x: (([1,2], {Cons, Nil}), {Cons})

=⇒ r1 : (r1.Cons.0 : [2, 4], {Cons, Nil}), {Cons, Nil})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (mult2 x) <= 4)mult2: l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})

x: (([1,2], {Cons, Nil}), {Cons})

=⇒ r1 : (r1.Cons.0 : [2, 4], {Cons, Nil}), {Cons, Nil})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (r1) <= 4)mult2: l → ((r .Cons.0 : 2 × l .Cons.0, {Cons, Nil}), {Cons, Nil})

x: (([1,2], { Cons, Nil}), { Cons})

=⇒ r1 : (r1.Cons.0 : [2, 4], {Cons, Nil}), {Cons, Nil})

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (r1) <= 4)

hd: l → 0 ∪Z l .Cons.0

r1 : ([2, 4], {Cons, Nil}), {Cons, Nil})
=⇒ r : [0, 4]

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (r1) <= 4)hd: l → 0 ∪Z l .Cons.0

r1 : ([2, 4], {Cons, Nil}), {Cons, Nil})

=⇒ r : [0, 4]

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(hd (r1) <= 4)hd: l → 0 ∪Z l .Cons.0

r1 : ([2, 4], {Cons, Nil}), {Cons, Nil})
=⇒ r : [0, 4]

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(r <= 4)hd: l → 0 ∪Z l .Cons.0

r1 : ([2, 4], {Cons, Nil}), {Cons, Nil})
=⇒ r : [0, 4]

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(r <= 4)

• r : [0, 4]

✓ The assertion is proved!

15

Example 3

let x = Cons(1, Cons(2, Nil)) in
assert(r <= 4)

• r : [0, 4]

✓ The assertion is proved!

15

Implementation

MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer

16

https://gitlab.com/mopsa/mopsa-analyzer

MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer

16

https://gitlab.com/mopsa/mopsa-analyzer

MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer

16

https://gitlab.com/mopsa/mopsa-analyzer

MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer

16

https://gitlab.com/mopsa/mopsa-analyzer

MOPSA (Modular Open Platform for Static Analysis)

A modular and multi-language open-source platform:

• Aiming at simplifying the design of static analyzers

• Implementing relational abstract domains

• Relying on cooperation and communication between them

• Supporting subsets of C and Python

https://gitlab.com/mopsa/mopsa-analyzer

16

https://gitlab.com/mopsa/mopsa-analyzer

OCaml Analysis

We performed the following implementation steps:

✓ Injecting OCaml typed AST into MOPSA AST
✓ Designing domains for algebraic values and non-recursive functions
✓ Implementing transfer functions for all other constructs (let, type declarations,

pattern-matching, etc.)

It represents about 2000 lines of OCaml, tested on a few dozens of toy programs, and
still has limitations:

✗ Implementation to complete (recursive functions)
✗ Polymorphism, Higher-order
✗ Impure features (mutable arrays, references)
✗ But also modules, functors...

17

OCaml Analysis

We performed the following implementation steps:

✓ Injecting OCaml typed AST into MOPSA AST
✓ Designing domains for algebraic values and non-recursive functions
✓ Implementing transfer functions for all other constructs (let, type declarations,

pattern-matching, etc.)

It represents about 2000 lines of OCaml, tested on a few dozens of toy programs, and
still has limitations:

✗ Implementation to complete (recursive functions)
✗ Polymorphism, Higher-order
✗ Impure features (mutable arrays, references)
✗ But also modules, functors...

17

Experimental results

Program Lines Time (s)
list.ml 4 0.003
tree.ml 2 0.005
match.ml 6 0.004

match_alarm.ml 6 0.005
match_error.ml 6 0.004

add.ml 3 0.004

Figure 1: Execution time on a few toy programs

18

Conclusion

Conclusion

• A static value analysis for a first-order functional language

• Design of a relational domain for algebraic values

• Implementation into MOPSA platform

• Paving the way towards an analyzer for a higher-order functional language

19

Further works

• Add support for higher order and polymorphism

• Extend to an impure fragment

• Make the implementation scalable!

• Towards higher-order information: length, depth, or even more sophisticated
properties (sort, balance)

20

Thank you for your attention

Polymorphism and higher-order

For polymorphism, we may:

• Analyze the function for each type instance encountered

• Develop equality and inequality domains for polymorphic data

For higher-order, we may:

• Analyze the function for each function summary in argument

• For numeric information, generalize the current analysis (functions and values are
just points of numeric domains)

But we would need new methods for structural information on algebraic values.

21

Impure features

We’d like to support arrays, references and mutable fields.

• Identify impure variables with types and abstract them to ⊤
• Give them as imputs to every functions

• Identify functions where impure variables don’t escape to reduce the cost

22

	Introduction
	Functional programming
	Domains for algebraic data
	Functions
	The analysis on our example
	Implementation
	Conclusion

