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Uncertainty in embedded systems

Synchronous languages

igh-level specification language g™ ¢
Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade _ INTRODUCTION TO
\1 Stochastic

Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

/"‘<4

Existing approaches
Manually implement stochastic controller: Can be error prone
Offline statistical tests: Requires up-to-date offline data

Reactive Probabilistic Programming
Synchronous languages with probabilistic constructs
Make the probabilistic model explicit
Automatically learn posterior distributions from observations

KARL J. ASTROM
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Synchronous data-flow languages and block diagrams
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Reactive probabllistic systems

Synchronous data-flow languages and block diagrams
Signal: stream of values
System: stream processor

ProbZelus: add support to deal with uncertainty
Extend a synchronous language
Parallel composition: deterministic/probabilistic
Inference-in-the-loop
Streaming inference

gps

boat

X_dist

controller

infer

tracker
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Synchronous programming

Reactive Probabllistic Programming



Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

Stream operations
Constant are lifted to stream:1 = 1, 1, 1,

Temporal operators: —, pre, fby
Control structures: reset/every, present, automaton

/ Bourke, Pouzet 2013
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Probabillistic programming

Reactive Probabllistic Programming
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Propabillistic programming languages

General purpose programming languages extended with probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

Multiple examples:
Church, Anglican (lisp, clojure), 2008
WebPPL (javascript), 2014

Pyro/NumPyro (python), 201/7/2019
Gen (julia), 2018
ProbZelus (Zelus), 2019

More and more, incorporating new ideas:

New inference techniques, e.g., stochastic variational inference (SVI)
Interaction with neural nets (deep probabilistic programming)

11
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Bayes

Thomas Bayes (1701-1761)

https://en.wikipedia.org/wiki/Thomas_Bayes
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Bayesian reasoning

Bayesian Inference: learn parameters from data
Latent parameter x
Observed data yq, ..., yn,

p(.fl?) p(y17 cee sy Yn | 'CE)
p(Y1s---»Yn)

p(x]|yr,...,yn) = (Bayes' theorem)

x p(x) p(y1,. .., Yn | T) (Data are constants)

Thomas Bayes (1701-1761)
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Bayesian reasoning

Bayesian Inference: learn parameters from data
Latent parameter x
Observed data yq, ..., yn,

(@ | Yoo s ) = P@) WL, Yn [ T)  goest theorem)

P(Y1,- - Yn)
posterior
X .— (Data are constants)
prior likelihood

let model (y1, ..., yn) =
let x = sample prior 1n
let () = observe (likelihood x) (y1, ..., yn) in Thomas Bayes (1701-1761)
X

let posterior = infer model (y1, ..., yn)

14 https://en.wikipedia.org/wiki/Thomas_Bayes



Probabllistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

More general than classic Bayesian Reasoning

let rec weird () =
let b = sample (bernoulli ~p:0.5) in
let mu = if (b = 1) then 0.5 else 1.0 1in
let theta = sample (gaussian ~mu ~sigma:1.0) 1in
1f theta > 0. then
observe (gaussian ~mu ~sigma:0.5) theta;

theta
else weird () Thomas Bayes (1701-1761)

let weird dist = infer weird ()
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Probabllistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

More general than classic Bayesian Reasoning

let rec weird () = o001
let b = sample (bernoulli ~p:0.5) in ool
let mu = if (b = 1) then 0.5 else 1.0 1in sooo|
let theta = sample (gaussian ~mu ~sigma:1.0) 1in oo
1f theta > 0. then .

observe (gaussian ~mu ~sigma:0.5) theta; -

theta -
else weird ()

0.0006

0.0004

let weird dist = infer weird ()

0.0002
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FProb/Zelus

Reactive Probabllistic Programming
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Reactive probabillistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

()=, o
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let proba tracker (y) = x where
rec X = x0 — sample(mv_gaussian(f *@ (pre x), q))
and () = observe(mv_gaussian(h *@ x, r), v)
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Reactive probabillistic programming

infer

tracker
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Reactive probabillistic programming

y = 7 y = _3
infer infer
tracker tracker
p(xg | Yo) p(x | Yo» Y1)
5 0 5 -5 0 5
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Part Il. Programming (mini) ProbZelus



The Zelus compiller

program.zls

|

Parser [—* Analyses [— Rewrites [—* Scheduling[—" OBC

zeluc

\4

Embedded code (OCaml)
mperative updates to the state

orogram.byte

21 Bourke, Pouzet 2013



(Generated code

(* a synchronous stream function with type 'a -D— 'b %)
(* is represented by an OCaml value of type ('a, 'b) node %)
type ('a, 'b) node =

Node:
{ alloc : unit = 's; (% allocate the state *)
step : 's = 'a = 'b; (* compute a step *)
reset : 's — unit; (* reset/initialize the state =*)

} - ('a, 'b) cnode

(*
let m = alloc () in
reset m;
while true do
let o = step m 1 1n
done

*)

22 https://github.com/INRIA/zelus/blob/main/lib/std/ztypes.ml



Mini ProbZelus runtime

type 'a distribution
type prob

val sample : prob * 'a distribution -AD— 'a

val observe : prob * 'a distribution * 'a -AD— unit

val infer : ((prob * 'a) -D— 'b) -S— 'a -D— 'b distribution

23
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Mini ProbZelus runtime

type 'a distribution
type prob

val sample : prob * 'a distribution -AD— 'a
val observe : prob * 'a distribution * 'a -AD— unit

val infer : ((prob * 'a) -D— 'b) -S— 'a -D— 'b distribution

let proba tracker (y) = x where let node tracker (prob, y) = x where
rec Xx = x0 — sample(mv_gaussian( ... rec Xx = X0 — sample(prob, mv_gaussian(
and () = observe(mv_gaussian( ... —_— and () = observe(prob, mv_gaussian(

infer tracker vy infer tracker vy
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Streaming inference

Reactive Probabllistic Programming

24



Importance sampling

observe
Approximate inference algorithm

Run a set of n independent executions
sample(d): draw a sample from a distribution
observe(d, x):add logpdf d X tothe current score

1nfer: gather (values, scores) to approximate the distribution
sample

.
i
[\
]

observe @ O
S¢S
W
. Z{OIFV} k
p (fi) =v) =
2: Wi
{Ok}
obs!

NNy

010, 0304 050
Wi Wy W3 W,  Ws W

| —— T
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Importance sampling

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=20 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)




Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=1( =1 =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1

Sven Sachsalber, Looking for a needle in the Haystack, 2014



Importance sampling

t =0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=1

sample (gaussian
observe (gaussian

Sven Sachsalber, Looking for a needle in the Haystack, 2014



Particle filter

Approximate inference algorithm : importance sampling, but...

Add a resampling step at each observe

Compute the score of the particles to compute a distribution
Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?
Continuation Passing Style (CPS)?
Clone the memory state?

28



Particle filter

Approximate inference algorithm : importance sampling, but...

Add a resampling step at each observe

Compute the score of the particles to compute a distribution
Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?
Continuation Passing Style (CPS)?
Clone the memory state?

type ('a, 'b) cnode =

Cnode:
{ alloc : unit — 's;
copy : 's = 's — unit;
step : 's - 'a = 'b;
reset : 's — unit;

} - ('a, 'b) cnode

28
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Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
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Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1 t =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
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Delayed sampling

Simple Particles Filters can be impractical
Require lot of computing power
Poor approximation

Exact inference is often possible

Semi-Symbolic inference
Perform as much exact computation as possible
Fall back to a Particle Filter when symbolic computation fails

Main idea
Keep track of conjugacy relationships
Incorporate observations analytically
Sample only when necessary
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Delayed sampling

Simple Particles Filters can be impractical

Require lot of computing power Example: Conjugate Gaussians
Poor approximation

x ~ N (g, 6p)

Exact inference is often possible y ~ N(x, o)
Semi-Symbolic inference x|(y=v)~ Ny, o)

Perform as much exact computation as possible 1

Fall back to a Particle Filter when symbolic computation fails 1 | 1 Ho v

N T\ ) \g o
Main idea

Keep track of conjugacy relationships 1 1 —2

Incorporate observations analytically 0| = |

Sample only when necessary gg o2
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0
sample (gaussian (0, 10))
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0
sample (gaussian (0, 10))
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

,/V(O,l())@
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Example: 2 Gaussians

/V(O, 10) x ~ N(ug, 6p)
y ~ N(x,0)

—AH- 2
1 N 1
o= —+—
! o5 0O’
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X

Example: 2 Gaussians

4/_-69’] 9) . x ~ N (U, 6)
/V(297,0995) y ~ N(x,0)

—AH- 2
1 N 1
o= —+—
! o5 0O’
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))

and () = observe (gaussian (x, 1), vy)
t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))

observe (gaussian (x, 1), 3)

X

AO10)
/V(Z.97,0.995)©

@
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

32 Murray et al. 2018



Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
________________________ e
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
AOAD) T e
#297.0995)( ) O
N(4.32,0.816)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
ALO10) e S S ¥
/V(2.97,0.995)<\ .C\* .
/ //V(4.32,0.816)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
=0 t=1 t =2

sample (gaussian (0, 10))
observe (gaussian (x, 1),

)

X pre X
) ——— A
#(2.97,0.995)( et

sample (gaussian (pre x, 1))
observe (gaussian (x, 1),
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sample (gaussian (pre x, 1))
observe (gaussian (x, 1), ..)
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Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 Unbounded resources
sample (gaussian (0, 10)) sample (gauy
observe (gaussian (x, 1), 3) observe (gal
Memor
35 10* | | | |y | N
X pre 5 103 — Y >D5 AAAAAA —
E 3 ‘ DS A‘AAA
o 10 — AAAA 7
7p) NS
A(2.97,0.995 o — 0 Lant
( ) f ------------------------------------------------ g 03 - AAAA‘ _
o NS
0 200 400 600 800 1000 1200 1400 1600
e :m - Step

32 Murray et al. 2018



Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
=0 t=1 t =2

sample (gaussian (0, 10))
observe (gaussian (x, 1),

)

X pre X
) ——— A
#(2.97,0.995)( et

sample (gaussian (pre x, 1))
observe (gaussian (x, 1),
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Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and ()

= observe (gaussian (x, 1), V)
t =10 t=1 t =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
DT T TN e e L ’ __--""'——:—_—_:-. ----------------------------------------------- %
#(297.0.995)( e G‘ _______________________________________________________________________ :
""""" TN (4.32,0.816)
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Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))

and () = observe (gaussian (x, 1), vy)
=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
A%0:10) . o . - S ’
H(2.97,0995)( s G e —— :

N(4.32,0.816)
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Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
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Benchmarks

Baseline: SDS with 1,000 particles

fé? . 3,900 PF SDS e Particles
s 10 ) 650
£ : o
Z 102 200 150
3= : B e 6.=5
§ 101§
5 .
e 0
g 10 - _
= - 1 1
® ®
Beta- Gaussian- Kalman-1D Qutlier
Bernoulli Gaussian

Conclusions
SDS is always faster to match accuracy
Reduction in particle count outweighs symbolic overhead
SDS can be exact (1 particle)
PF Is impractical for advanced examples
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Static analysis

Reactive Probabllistic Programming
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Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Bounded memory delayed sampling?

let proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

35

Yes!



Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

36



Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

OnOnOa®
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Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
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Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))

rec init
and x
and ()

observe (gaussian (x, 1), vy)
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Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

A 4
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Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where

rec init
and x
and ()

X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))
observe (gaussian (x, 1), vy)

A 4
o5
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No!



Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where

rec init
and x
and ()

X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))
observe (gaussian (x, 1), vy)

Can we determine if a given program will run in bounded memory?

A 4
o5

36

No!



Trace: abstract execution

let proba tracker (y) = x where

rec X
and ()

sample (gaussian (0, 10) — gaussian (pre x, 1))

observe (gaussian (x, 1), y)

trace state time
Xg — L X = X =0
Yo < Ko -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .
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Trace: abstract execution

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time
random variable - Xo < L X = X =0

Yo < Ao -

observe y, ::

X < Xy i X = x, pre X = x =1

Y1 <X -

observe y; ::

.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .
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Trace: abstract execution

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time
random variable - Xo < L X = X =0
Vo < Xy -
observation » observe y, ::
X < Xy i X = x, pre X = x =1
Vi < X i
observe y; ::
.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .
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Static analysis for delayed sampling

Semantic properties

m-consumed property unseparated paths property
Chains of variables before an observe are bounded Chains of variables referenced in the state are bounded

heorem: The program satisfies these two properties Iff it executes in bounded memory
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Static analysis for delayed sampling

Semantic properties

m-consumed property
Chains of variables before an observe are bounded

unseparated paths property
Chains of variables referenced in the state are bounded

heorem: The program satisfies these two properties Iff it executes in bounded memory

Static analysis

Track variables introduced but not used yet

Track maximal path between pairs of variable in the state

Theorem: Any program that passes the analysis executes in bounded memory

38



m-consumed property

proba tracker (y) = x where

rec X
and ()

sample (gaussian (0, 10) — gaussian (pre x, 1))

observe (gaussian (x, 1), y)

trace

state

time

Xg < L
observe y, ::
X| < Xy i
observe y; ::
Xy < Xp i

X
[

X
Il

39
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m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and () = observe (gaussian (x, 1), vy)

trace state time
Xg < L X = X, =0
Yo < Ao -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

x2<—xl .. X = .XZ, pre X = xl t:2

Yo =Xy e
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m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and () = observe (gaussian (x, 1), vy)

trace state time
Xg < L X = X, —0
Yo < Xo

Yo Is O-consumed » observe y, ::
X < Xo - X = X1, Pre X = Xx =1
V< Xy i
observe y, ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e
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m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X| < Xg i X = x, pre X = x, =1
V| < X
observe y, ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e
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m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X < Xo - X = X1, Pre X = Xx =1
Xy Is 1-consumead - Y1 <X
y; is O-consumed » observe y; ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e
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m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X| < Xy - X = X1, Pre X = Xx =1
Xy Is 1-consumead - Y — X i Y@S'
y; is O-consumed » observe y; ::
Xy <= X1 1. X = x, pre x = x f =9

Yo =Xy e
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Unseparated patnhs property

proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time

Xg — L X = X =0

Yo €< Xog --

observe y, ::

X
[

1|
S
o~
1
ek

Y1 €< X1 ..

observe y; ::

Xy € Xp i X

Yy €= Xy .

[

Ra
=\
1
®
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Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg — L X = X =0
Yo < Ko -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

x2<—xl .. X = .XZ, pre X = xl t:2

Yy €= Xy .
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Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
X — L X = X =0
Yo < Ko -

observe y, ::

x1<—x0 .. X=.x1, preX=XO t=1
yi< X -

observe y; ::

Xy < Xp i X = x, pre x = x =2

Yy € Xy .
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Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time

X — L X = X =0

Yo < Ko -

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1

e A Yes!
observe y; ::

Xy < Xp i X = x, pre x = x =2

Yy € Xy .
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Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time
X — L X = X =0
Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=.x1, preX=XO t=1
Y Xp i X0 = x,

observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,
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Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time
X — L X = X =0
Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1
Y Xp i X0 = x,

observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,
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Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time

X — L X = X =0

Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1

Y Xp i X0 = x, I\J()!
observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,
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Evaluation

m-consumed unsep. paths  bounded mem.

output actual output actual output actual

Outlier X X
MTT X X

RN
RN
=
=
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output actual output actual output actual

memory IS
probabllistically

bounded \
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Evaluation

m-consumed unsep. paths  bounded mem.

output actual output actual output actual

memory IS
probabllistically

bounded \
Outlier X X

MTT X X

AN
AN
=
=

Memory Iis
always bounded
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lake away

ProbZelus: a probabilistic synchronous languages
Bayesian inference on streams
Inference Iin the loop
Make the underlying probabilistic model explicit

Inference with bounded resources
Monte Carlo approximations: Importance sampling, particle filter
Semi-symbolic inference on streaming models

Static analysis
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u [ ] CCS Conc¢ Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
models; programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced
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1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
2018; Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018; Gelman et al. 2015; Goodman
et al. 2008; Goodman and Stuhlmiiller 2014; Gordon et al. 2014; Huang et al. 2017; Mansingkha et al.
2018; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2015; Pfeffer 2009; Tran et al. 2017]. These
languages provide programming constructs and tools for probabilistic modeling and automated
inference. Researchers have developed probabilistic programming languages for several domains,
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