Semantics of Reactive Probabilistic Programming

JFLA 2024

Guillaume Baudart <guillaume.baudart@inria.fr>
Louis Mandel <louis.mandel@us.ibm.com>

Christine Tasson <christine.tasson@isae-supaero.fr>

mailto:guillaume.baudart@inria.fr
mailto:l.mandel@us.ibm.com
mailto:christine.tasson@isae-supaero.fr

Introduction

Probabilistic semantics

Probabilistic Progamming

A probabilistic program is a random variable: it can be sampled and models a probability
distribution, like a dice or gaussian.

Las Vegas algorithm
Given t : int — int and n : int, find 7 such that 1 </ < nand t(i) =0

let rec f () =
let x = sample(uniform int(1, n)) in
if t(x) = 0 then x else {()

Assuming Jip, 1 < ip <n and t(ip) =0,

e does it terminates 7
e what probabilistic model does it represents ?

Probabilistic Progamming

A probabilistic program is a random variable: it can be sampled and models a probability

distribution, like a dice or gaussian.

Las Vegas algorithm

Given t : int — int and n : int, find 7 such that 1 </ < nand t(i) =0
let rec f () =

let x = sample(uniform int(1, n)) in
if t(x) = 0 then x else {()

Assuming Jip, 1 < ip <n and t(ip) =0,
e does it terminates 7 yes ! almost surely.
e what probabilistic model does it represents 7 it depends on the evaluation strategy:
e Call-by-name: uniform_ int(1, n)
e Call-by-value: uniform{i | ¢(i) = 0}

Probabilistic Semantics might be tricky

Types: Measurable space: carrier X and a family of measurables ¥ x

Programs: if [- e : X then V7, [[e]]7 : Y x — RT is a measure on X,
i.e. [e] : T x Xx — R is a kernel.

Higher-Order?

Probabilistic Semantics might be tricky

Types: Measurable space: carrier X and a family of measurables ¥ x

Programs: if [- e : X then V7, [[e]]7 : Y x — RT is a measure on X,
i.e. [e] : T x Xx — R is a kernel.

Higher-Order? The category of measurable space and kernels is monoidal but not closed &),
as there is no measurable structure on function space R — R such that evaluation is
measurable.

W Aumann. Borel structures for function spaces. 1961

Probabilistic Semantics might be tricky

Types: Measurable space: carrier X and a family of measurables ¥ x

Programs: if [- e : X then V7, [[e]]7 : ¥ x — RT is a measure on X,
i.e. [e] : T x Xx — R is a kernel.

Higher-Order? The category of measurable space and kernels is monoidal but not closed &),
as there is no measurable structure on function space R — R such that evaluation is
measurable.

W Aumann. Borel structures for function spaces. 1961
Yet other models can be defined, where the function type is not interpreted as measures on
functions but as a distribution transformer, like stochastic matrix or bayesian networks.

W Heunen & al. A convenient category for Higher-Order Probability Theory. 2017
W Ehrhard & al. Measurable cones and Stable, Measurable Functions. 2018

Introduction

Semantics of Synchronous Probabilistic
Programming

Tracker example

Xt YVt

pos,=(x, y)

Xet 1 Ve 1

rad,=(a,, 6)

W Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Tracker example

Linear Movement model

z = 10000m
pos,.; ~ A (pos;+0,sp)

Xt YVt

pos,=(%, %)

Xet 1 Ve 1

rad,=(a,, 6)

€,

W Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Tracker example

Linear Movement model

z = 10000m
pos,.; ~ A (pos;+0,sp)

Xt YVt

pos,=(%, %)

Radar: angle and delay

Xet 1 Ve 1
rad; = g(pos,)

ar = atan(¥%/x)

51’ - 2 V Xt2+yt2 Clight

rad,=(a,, 6)

€,

W Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Tracker example

pos,=(%, %)

Xt YVt

Xet 1 Ve 1

rad,=(a,, 6)

€,

Linear Movement model

z = 10000m
pos,.; ~ A (pos;+0,sp)

Radar: angle and delay

rad; = g(pos,)
ar = atan(¥%/x)

51’ — 2 vV Xt2+yz2 Clight
Noisy observation

rad_obs; ~ .#(rads,s;)

W Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

b} X0 Yt

Programming the tracker pos,=(x,
\ 0

plane 6
control | er d
radar rad =(a,, &)
—»| a,
%141 @
osition
P 1 proba tracker(rad__obs) = pos where
> rec init pos = pos_ init
radar infer position 5 o 1 . (1
observations tracker distribution s and pos = sample(gaussian(f(last pos), s_p))
1+ and rad = g(pos)
1 os pos_dist 5 and () = observe(gaussian(rad, s_r), rad_ obs)
)| oo
rad o
5) 7 node main(rad_obs) = u where
¢ —>observe | g g
@y - g s rec pos_dist = infer (tracker (rad_ obs))

o and u = controller(pos__dist)

Notice that equations correspond to arrows in block diagrams and are unordered.

Deterministic Synchronous

Semantics

Coiterative Semantics

Deterministic co-iterative semantics (under causality assumption)

State Machine e State: M
. init o
Allocation: [e]" : M e Input Environment: v €T
Transition: [[e]]itep M= MxV e Output Values: V
e where rec init x = ¢ nit - init init
and x = e_x =G ([[e]]lvm a[[exH:“ 7[[6)’]]:11)
and y = e_y o

step 0
Y+[x.last<—py] (mx) il

e where rec init x =
/
let m, v, = [ex]

. step
and x = e_x H (pX7 (m7 my, rny))
and y = e_y -
st 0
let m;” Vy = [[ey}];jr[)x./astepx,x%vx] (m}’) In
step

/ —
let m V. = [[eﬂ’y+[X./35t<_PX7X<_VX7y‘_V}/]

(m) in
(v, (M, m,m))), v

W Caspi & Pouzet. A Co-iterative Characterization of Synchronous Stream Functions. 1998 5

Mutually recursive equations

Streams defined by causal equations In one time step
(x, y) where let rec x = z+1
rec x = z+1 and y = x
and y = x and z = 42
and z = 42 in (x,y)

Scheduled agnostic semantics Fixpoint computation

e Inherited from block diagrams po=[x< L1,y Lz 1]
e Standard in industry: pr=[x< L1,y L,z 42
Simulink, Scade P2 =[x+ 43, y+ L, z+ 42]

p3 =[x« 43, y + 43,z + 42]
pa =[x < 43, y + 43,z « 42]

W Colago & al. A Constructive State-based Semantics and Interpreter for a Synchronous
Data-flow Language with State machines. 2023.

Deterministic Synchronous
Semantics

Relational Semantics

Deterministic Relational Semantics

Sequents
Evaluates expressions to streams: G,HlF e | s * G globals
e H maps all variables to streams

Checks stream equations: G,HF E

rec x =1 — last x + 1
2 * x

€T =
y =

D W

and y

N =
= DD

0,

(x, y) where rec init x = 0
H and x = last x + 1] (1,2)-(2,4)-(3,6)-...

and y = 2 * x

W Bourke & al. A formally verified compiler for Lustre. 2017.

Deterministic Relational Semantics

x ¢ H G,Ht e | st G, HF-e ls
G,HFclc G,HF x| H(x) -
G,HF x| G(x) G,HFE (en,e) | (s1,52)
G,Hrels H(x.last) =s
G,Ht op(e) | op(s) G,HF1last x| s

G,H-els. G(f) =node f x = e G,[x+ s]Ferls
G,H+f(e)ls

G,H+ He - E G,H+Hetels
G,HF e whererec E | s

G,HF el H(x) G,Hreli-s H(xlast)=i-H(x) G,H-E G HFE
G, Hrx=e G,HF init x = e G,H+ E and E

Deterministic Synchronous
Semantics

Equivalent semantics

Equivalence between Deterministic Coiterative and Relational Semantics

Theorem [Bourke & al. 2017]: For causal models,
For any H and « such that Yk, Vx € FV(e), vk(x) = H(x)x,

o init
if G,HF els, then, Vk, si(H) = vk(H<k) where Mo B [[e]];/t“ep
- mi, v = [e]},” (mk-1)

Equivalence between Deterministic Coiterative and Relational Semantics

Theorem [Bourke & al. 2017]: For causal models,
For any H and « such that Yk, Vx € FV(e), vk(x) = H(x)x,

mo — [[e]] i/l’(l]it

if G,HF then, Vk, H) = H h J
if G, el s, then sk(H) = vik(H<x) where {mk’Vk :[[e]]vtkep(mk_l)

(x, y) where rec init x = 0

H and x = last x + 1 | (1,2)-(2,4)-(3,6) ...
and y = 2 * x
. init o
(x, y) where rec init x = 0 —_—
[s 0 = 0.(0: 0.0, 0)
and y = 2 * x 0

|[(x, y) where rec init x = 0

il = = 2t 5 1ﬂ‘ (k= 1,((0,0),.0,0)) =k ((0;0),0,0), (k, 2xk)

and y = 2 * x

Yk
Mmy—1 mi Vi

Deterministic Synchronous
Semantics

Program Equivalence

Program Equivalence

Definition: e! = e? if for all input streams, e! and e? produce the same output streams.

Thanks to the equivalence of semantics, the equivalence in the relational semantics coincides
with the bisimulation of state machines from the coiterative semantics.

10

Program Equivalence

Definition: e! = e? if for all input streams, e! and e? produce the same output streams.

Thanks to the equivalence of semantics, the equivalence in the relational semantics coincides
with the bisimulation of state machines from the coiterative semantics.

Relational equivalence:

VH, s*(H) = s*(H) where G,HF €' | s'.

10

Program Equivalence

Definition: e! = e? if for all input streams, e! and e? produce the same output streams.

Thanks to the equivalence of semantics, the equivalence in the relational semantics coincides
with the bisimulation of state machines from the coiterative semantics.

Relational equivalence:
VH, s*(H) = s*(H) where G,HF €' | s'.

Coiterative equivalence:

There is a bisimulation =, i.e. a relation on states such that:

Vk Yy m§ = m3 where m{ = [e]]lmt

1~ 2 1 _ 2 StCP i
me = miy and Vi = Vi where mk+1,vk+1—[[ﬂvm my)

Probabilistic Synchronous
Semantics

Probabilistic Programming

Sample mean and law of large numbers

Sample mean: The sample mean of a random variable is obtained by simulation:

e compute n samples denoted xi, ..., X,.

e compute the mean %(xl + o+ Xxp).

11

Sample mean and law of large numbers

Sample mean: The sample mean of a random variable is obtained by simulation:

e compute n samples denoted xi, ..., X,.

e compute the mean %(xl + o+ Xxp).

Law of large numbers: The sample mean approximates the mean.

If Xi,...,X, are independent identically distributed (i.i.d.) and the mean of g(X) is finite, then

=" 8(X) = E(g(X))

11

Sample mean and law of large numbers

Sample mean: The sample mean of a random variable is obtained by simulation:

e compute n samples denoted xi, ..., X,.

e compute the mean %(xl + o+ Xxp).

Law of large numbers: The sample mean approximates the mean.

If Xi,...,X, are independent identically distributed (i.i.d.) and the mean of g(X) is finite, then

=" 8(X) = E(g(X))

% > X = E(X)
i=1

11

Monte-Carlo simulation and the law of large numbers

A Probabilistic program is the random variable whose values are the outcome of the
program execution. If the program has no effect, then its executions are i.i.d. Then:

let pid ()
let x = sample(uniform(0., 1.)) in
let y = sample(uniform(0., 1.)) in
let () = assume(distance(x,y) < 1.) in
1.

Monte-Carlo simulation and the law of large numbers

A Probabilistic program is the random variable whose values are the outcome of the
program execution. If the program has no effect, then its executions are i.i.d. Then:

Law of large numbers:

e Run n times the probabilistic program

e Store the outputs xg, ..., x,.
e Compute Lﬂ—&-xn —oo E(X) = [pux(dx) and
x1)+ -+ g(Xn
g(x) . 8()—>w — [g(x)ux(dx)

let pi4() =
let x = sample(uniform(0., 1.)) in
let y = sample(uniform(0., 1.)) in

let () = assume(distance(x,y) < 1.) in
1.

12

Monte-Carlo simulation and the law of large numbers

A Probabilistic program is the random variable whose values are the outcome of the
program execution. If the program has no effect, then its executions are i.i.d. Then:

Law of large numbers:

e Run n times the probabilistic program

e Store the outputs xg, ..., x,.
e Compute Lﬂ—&-xn —oo E(X) = [pux(dx) and
X1)+ -+ g(Xn
g(x) . 8()—>@o — [g(x)ux(dx)

Monte-Carlo Simulation: histograms approximate distributions

o 14{ilx; = x} approximates
let pi4()
E(lx=x) =P(X =x) let x

o 1#{ila < x; < b} approximates

sample(uniform(0., 1.)) in

let y = sample(uniform(0., 1.)) in
E(l,<x<p) =P(a < X < b) let () = assume(distance(x,y) < 1.) in
il

12

ProbZelus

1 proba tracker(rad_obs) = pos where :
2 rec init pos = pos_ init 0

3 and pos = sample(gaussian(f(last pos), s_p))

4 and rad = g(pos) last pos = X,
5 and () = factor(pdf(gaussian(rad, s_r))(rad_obs)) »> 7/
6 (* () = observe(gaussian(rad, s_r), rad_obs) *) / 05 =X,41, Viu

s node main(rad_obs) = u where Vie

9 rec pos_dist = infer (tracker (rad obs)) ez

ad_obs =(a, 6)

T

10 and u = controller(pos_ dist)

w=pdfigaussian(a,s_r))(a,,,)

Y

Fobs

ProbZelus

1 proba tracker(rad_obs) = pos where

2 rec init pos = pos_ init

3 and pos = sample(gaussian(f(last pos), s_p))

4 and rad = g(pos)

5 and () = factor(pdf(gaussian(rad, s_r))(rad_obs))
6 (* () = observe(gaussian(rad, s_r), rad_ obs) *)

s node main(rad_obs) = u where
9 rec pos_ dist = infer (tracker (rad_obs))
10 and u = controller(pos_ dist)

sample: eeeeeee® [(pos® 1),... (pos", 1)]
observe: oo eeo® [(pos® wP),..., (pos", w")]

categorical distribution

Particle Filtering

last pos = x;,y,

/N

filast p(;.s):::f,

t 7/

POS =Xpi 1, Vit
1)

® S&erad =g(pos)

’ Ja 3 A
‘ - @ Fad_obs =(a,, 6,)

w=pdfigaussian(a,s_r))(c,,)

A Gpps

Probabilistic Synchronous
Semantics

Probabilistic Semantics

Co-iterative kernel semantics

State Machine e State: M
Allocation: {[e]}ivnit M e Input Environment: v €T
Transition: {[e]}ith M= Yy — R e Output Values: V

[infer(e)]>°" : M dist — M dist x V dist

[[infer(e)]];nit = [e]]i,ynit
[inter (€))7 (o) =letv = /”(dm) [P (m) in let 7 = v/u(T) in

(m14(7), 2. (7))

W Baudart & al. Reactive Probabilistic Programming. 2020

14

Co-iterative kernel semantics

State Machine e State: M
Allocation: {[e]}init M e Input Environment: v € I
Transition: {[e]}Sth M= Yy — R e Output Values: V

Qe step

e where rec init x = ¢

_ btep /

and x = e_x (Px, (m, my, my)) /{]ex et Iastip] (my) (dml,, dvy)
and y = e_y

step
/ {[e}’]}'er[x last<—py,x<—vx] () (dm dVy)

/ {Ie]}'Syt—il[)x./ast<—px,x<—vx,y<—vy] (m) (dml’ dV)

5(vx,(m m, m;))

W Baudart & al. Reactive Probabilistic Programming. 2020

Probabilistic mutually recursive equations

In one time step

Streams defined by causal equations let rec x — sample(gaussian(42, 1))

(x, y) where and y = x
rec x = sample(gaussian(42, 1)) in (x,y)
and y = x

Scheduled semantics:
Pxy = [Oxx x A (42,1)(dx)

Scheduled agnostic semantics Fixpoint and order on measures
e Inherited from block diagrams e Fixpoint of p +—
e Standard in industry: J [(A (42,1) ® 6,) (dx', dy”)*pu(dx, dy)*0xr
Simulink, Scade e Kleene:

e | is the null measure
e u < vwviff for all U, u(U) < v(U)

\ Jones & Plotkin. A Probabilistic Powerdomain of Evaluations. 1998
15

Probabilistic mutually recursive equations

In one time step

Streams defined by causal equations let rec x — sample(gaussian(42, 1))

(x, y) where and y = x
rec x = sample(gaussian(42, 1)) in (x,y)
and y = x

Scheduled semantics:
Pxy = [Oxx x A (42,1)(dx)

Scheduled agnostic semantics Fixpoint and order on measures
e Inherited from block diagrams e Fixpoint of p +—
e Standard in industry: JJ (A4 (42,1) ® 6x) (dx', dy')+ pu(dx, dy)*0xr,
Simulink, Scade o Kleene: @

e | is the null measure
e u < vwviff for all U, u(U) < v(U)

The null measure is the least fixpoint.

\ Jones & Plotkin. A Probabilistic Powerdomain of Evaluations. 1998
15

From kernel to density semantics

A measure 1 : ¥ — RT with density pdf, : [0,1] — R™* can be expressed with respect to the
Lebesgues measure: (change of variable formula)

0= /6x * pdfM(dx) = Sicdf . (r) * pdfu(icdfu(dr)) = Sicdf . (r) * dr
[0,1] [0,1]

Kernel Semantics {e]}, : £, — R™ and Density Semantics (e), : [0,1]? — V x R*
v 2!

p number of samples
r € [0, 1]P sample seeds

(e),, (r) = (v(r), w(r)) with

v(r) output value
w(r) weight

are related by Lebesgues measure A[g 1)

vy er, {el, = /[01] du(ry * w(r)dr

16

Probabilistic Synchronous
Semantics

Co-iterative Density Semantics

Co-iterative density semantics

State Machine
Allocation: ([e))““t : MxN

Transition: ((e))“ep M x[0,1]P - M x V x Rt

GoTo Kernel

e State: M Environment: vy €T
e Output Values: V

e Number of random sites p

Given random seeds, computation is deterministic.

([e])i’ynit — [[e]]init 0
@ (m([) = letm',v=[el]
(sample(e))™

(sample(e))y " (m, [r])

([factor(e));nit =
([factor(e))itep (m[) =

m)inm' v,1

let m = [e]2* in m,0
let m' v = [[e]]itep (m)inm',(),v

if e is deterministic

[[e}]ffep (m) in m’icdf ,(r), 1

17

Co-iterative density semantics
State Machine
Allocation: ([e))““t : MxN
Transition: ((e))“ep M x[0,1]P - M x V x Rt

e State: M Environment: vy €T
e Output Values: V

e Number of random sites p

Given random seeds, computation is deterministic.

[[infer(e)]]ginit = letm,p= ((e))mlt in6m, p
q D step step . .
[infer(e)], ™" (o.p) = let yp(m) = //et m' v, w = () (m,r) in W d(ny) drin
[0,1»

let v= [o(dm)¥(m)inletv =v/v(T) in

(714 (7). p), m24(V)

17

Co-iterative density semantics

State Machine . e State: M Environment: vy €T
Allocation: ([e))’yt : M xN e Output Values: V
e step . p +
Transition: (e); ™" : M x [0,1]F = M x V xR e Number of random sites p

One big integral on random seeds instead of nested integrals at each synchronous step.

e where rec init x = ¢ A
and x = e_x (M), [r,re,1]) =

and y = e_y 5

let ml, vy, wy = ((ex)),sytep (my,)

d , o step
and mj,, vy, w, = ([ey)),y (my,ry)

and m',v,w = ((e))itep (m,r) in

(v, (m', i, my)), v, we wy - wy

17

Co-iterative density semantics
State Machine

Allocation: (€)™ : M x N

Transition: ((e))itep M x[0,1]P - M x V x Rt

e State: M Environment: vy €T
e Output Values: V

e Number of random sites p

One big integral on random seeds instead of nested integrals at each synchronous step.

e where rec init x = step
let M', V', W' = and x = e_x (M), [r, re, 1y]) in Supr @6y W dirdirdr, —
and y = ey

[0’1]3 ol

let m;“ Vy, Wy = ([ex))itept (mX7 rX)
step
and mj, vy, w, = ([ey))7 (my,r,)
o172 and m',v,w = ([e)imp (m,r)in
(6(Vx7(m/7m)/<im}l/)) ®0y) kW Wy - wy drdr.dr,

17

Co-iterative density semantics

State Machine
Allocation: (e)™": M x N

e State: M Environment: vy €T

’Yt e Output Values: V
HH . step . P +
Transition: (e)5": M x[0,1]P - M x V x R e Number of random sites p

One big integral on random seeds instead of nested integrals at each synchronous step.

e where rec init x = step
let M', V', W' = and x = e_x (M), [r, re,r]) in Sap @Sk W drdrydr, —

and y = e_y -

e where rec init x = ¢ step
and x = e_x (M))

and y = e_y

[0,1°

Y

17

Probabilistic Mutual Recursive equations

Streams defined by causal equations In one time step
(x, y) where let rec x = sample(gaussian(42, 1))
rec x = sample(gaussian(42, 1)) and y = x
and y = x in (x,y)

Scheduled semantics . .
Density semantics

/ 5k N (42,1)(dx)

/ let x,y = poo(r)(x,y) in 6 xydr

Fixpoint given random seed 0.1

= / let x = icdf y(a2,1)(r) in O(x x)dr
[0,1]

po(r) =[x+ L, y+ 1]

pl(r) = [X “— I'Cdf_l/y(42’1)(l’)7 y L] S /6(X,x) * JV(42, 1)(dX)
p2(r) = [x « icdf y(a2,1)(r), y < icdf 4 (a2,1)(r)]

poc(r) = [x <= icdf yann)(r), ¥ < icdf 4 (az.1)(r)] (change of variable formula)

18

Co-iterative density semantics

D init

init

[[infer(e)]LY = let m,p=(e)," indm,p
[[in:fer(e)]]sSteP (o,p) = letyp(m /[01]P let m', v, w = (€)3P (m,r) in w % O(m.,y dr in

let v

) =
e

)inlet v =v/v(T) in (71.(7), p), 72+ (V)

and y = 1 - x

(D init
X, y) where
H:infer < rec x = sample(bernoulli(O.Q)))]] = (5(()()

(x, y) where
infer rec x = sample(bernoulli(0.2))
and y = 1 - x

D step
)]] = (600,02.0,0

= (600,02.0,0

,0,0> 1

.1), [(1,0) 0.2, (0,1) + 0.8]

1), / (1r<0.2 * 61,0 + Lr>0.2 * d(0,1))dr
[0,1]

19

Probabilistic Synchronous
Semantics

Relational Density Semantics

Relational density semantics

Sequents e G globals

Evaluates expressions to streams: G,H,RFe | s, w 8
e H maps all variables to streams

Checks stream equations: G,H, R+ E, W o R random amay streams

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

G,HFels G,HFels,
G,H,[|Fel(s1) G,H,[R] - sample(e) |} (icdfs,(R),1)
G,HFelw G,H+ Hg,Re - E : wg G,H+ Hg,Re el (s,w)
G,H,[] F factor(e) | ((),w) G,H,[R. : Re] F e where rec E |} (s, w * wg)

G,H,RFe | (H(x),w)
G,HRFx=e:w

20

Relational density semantics

Sequents e G globals

Evaluates expressions to streams: G,H,RFe | s, w 8
e H maps all variables to streams

Checks stream equations: G,H, R+ E, W o R random amay streams

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

p=RV(e) |G H.REel(sw) w=]]w] Re(l0.41-)

G,HF infer(e) | integ, W s

integ,, (W, - ws) (v -vs) =
(let p= [Wn(H, R)dy(1,ry AB(dR) in 11/ p(T)) - (integ Ws vs)

20

Relational density semantics

Sequents e G globals

Evaluates expressions to streams: G,H,RFe | s, w 8
e H maps all variables to streams

Checks stream equations: G,H, R+ E, W o R random amay streams

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

(x, y) where
[0.1 - 033 - 012 - ...] rec x = sample(bernoulli(0.2))
and y =1 - x

{ s= (1,0) - (0,1) - (1,0)

w = 1 . 1

20

Relational density semantics

Sequents e G globals

Evaluates expressions to streams: G,H,RFe | s, w 8
e H maps all variables to streams

Checks stream equations: G,H, R+ E, W o R random amay streams

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

(x, y) where
[0.72 - 0.08 - 0.14 - ...] F rec x = sample(bernoulli(0.2))
and y =1 - x

s= (0,1) - (1,0) - (1,0)
l w = 1 . 1 .

20

Relational density semantics

Sequents e G globals

Evaluates expressions to streams: G,H,RFe | s, w 8
e H maps all variables to streams

Checks stream equations: G,H, R+ E, W o R random amay streams

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

(x, y) where
[0.72 - 0.08 - 0.14 - ...] F rec x = sample(bernoulli(0.2))
and y =1 - x

l{ s= (0,1) - (1,0) (1,0)

w = 1 . 1

integ, (W, - ws) (v - vs) = (/{0 ” 6V(H7R)dR> - integ, 1 vs = pu - p -

where p is the categorical distribution [(1,0) — 0.2, (0,1) — 0.8]

20

Relational density semantics

Sequents

Evaluates expressions to streams: G,H,RFe | s, w

Checks stream equations: G,H, R+ E, W

e G globals

e H maps all variables to streams

e R random array strea

ms

AP is the Lebesgues measure on the cube of random streams ([0, 1]“)”.

integ, (W, - ws) (v - vs)

- ([, pownen)
[0,1]~

integ, 1 vs = p -

where 1 is the categorical distribution [(1,0) — 0.2, (0,1) — 0.8]

+ infer <

(x, y) where

rec x
and y

sample (bernoulli(0.2))
1-x

) N "

'u .

20

Relational density semantics rules

G,HFels G,HFels, G,HFelw
G,H,[[Fel(s1) G, H,[R] - sample(e) || (icdfs,(R),1) G,H,[] F factor(e) | ((),w)

G,H,Re - e (se,we) G(f) = proba f x = er G,[x < se], ReFer U (s, w)
G,H,[Re: Re]F f(e) U (s, w * we)

G,H+He,ReFE:we G H+He,Rel el (s,w) G,H,RF el (H(x),w)
G,H,[R. : Re] - e where rec E | (s, w * wg) G, HRFx=e¢:w
G,H,RtEel (i -s,wi-w) H(x.last) =i - H(x) G,HRi+E :w G, HRFE:w
G,H RF-init x=e:w;-1 G,H,[Ri: R]F E1 and E; : wa x w»

p=RV(e) [G,H,RF e (s,w) w =1 w]gc (o.14)r
G,H - infer(e) | integ, W s

21

Probabilistic Synchronous
Semantics

Equivalent semantics

Equivalence Co-iterative vs Relational density semantics

Corollary (for a causal model)

For any R, H and ~ such that Yk, Vx € FV(e), vk(x) = H(x)x,

k
G, H, REe \l, S, w iff Vk, Sk(H, R) = Vk(Hgkng) and H W,'(H, R) = Wk(HSkng)
=1

init
m = (e
where { 0 (&),

Mie, Vi, wie = (€)5P (me—1, Re))

Theorem (relational correctness) For a causal model e, and for any H,

o0.p = [inter(e)]2™"

if G,Ht infer(e) | p then)
(€) { Yk > 0, (0ks1,p) ks = [1nfer(@)55 (o4, p).

22

Probabilistic Synchronous
Semantics

Program Equivalence

Program equivalence

Definition: e; = e, if for all input contexts, e; and e, produce the same output streams.

23

Program equivalence

Definition: e; = e, if for all input contexts, e; and e, produce the same output streams.

Relational equivalence:

Probabilistic expressions e; 2 e; with RV(e;) = p; and RV(ep) = ps if VH, Vk > 0,

/Wlk(Hle) * s (HR) dMH(R) = /W2k(H7R2) * Os (MR dAZ(R2)

where G,H,Ri F e | (s1,w1) and G,H, Ry - e |} (52, wn).

23

Program equivalence

Definition: e; = e, if for all input contexts, e; and e, produce the same output streams.

Relational equivalence:

Probabilistic expressions e; 2 e; with RV(e;) = p; and RV(ep) = ps if VH, Vk > 0,

/Wlk(Hle) * s (HR) dMH(R) = /WZk(H7R2) * Os (MR dAZ(R2)

where G,H,Ri - e1 | (s1,w1) and G, H, R - &5 || (52, wa).
Proposition: if there is f : [0, 1]P* — [0, 1]P> measurable, that preserves uniform distribution
Slk(H7 R) = 52;((:"/7 f(R))

Wlk(H, R) = Wzk(H, f(R)) '
where G,H, Rt e; || (s;,wy) and G, H,f(R) F e | (s2, wa).

e1 = e when VH and VR, Vk > 0,

23

Program equivalence, an example

’ sample(e;) + sample(ey) = x 4+ y where rec x = sample(e;) and y = sample(e) ‘

24

Program equivalence, an example

’ sample(e;) + sample(ey) = x 4+ y where rec x = sample(e;) and y = sample(e) ‘

H, Ri - sample(e1) | (s1,w1) H, Ry - sample(ez) | (s2, wa)
H,[R1 : Rz] - sample(e;) + sample(ez) | (s1 + s2, wiws)

24

Program equivalence, an example

’ sample(e;) + sample(ey) = x 4+ y where rec x = sample(e;) and y = sample(e) ‘

H, Ri - sample(e1) | (s1,w1) H, Ry - sample(ez) | (s2, wa)
H,[R1 : Rz] - sample(e;) + sample(ez) | (s1 + s2, wiws)

H + Hg, Ry - sample(ez) | (s2, wa) H + Hg, Ry + sample(er) | (s1,w1)

H+ Hg, Ry - x = sample(ez) : wn H+ Hg,Ri - y = sample(er) : wy

H+Hg,[] Fx+ydl(s2+s1,1) H+ Hg,[R2 : Ri] F x = sample(ex) and y = sample(er) : wiws

H,[R2 : Ri] F x + y where rec x = sample(ey) and y = sample(er) | (s2 + s1, wiwn)

where He = [x < s,y + s1].

24

Soundness of a Program
Transformation

APF

Remember JFLA’23

Filtrer sans s'appatvrir : inférer les parameétres constants des
modéles réactifs probabilistes

1 Introduction

Problem: Implementation and Correction of a
transformation of probZelus programs in order
to apply APF

Semantics tools: Kernel co-iterative semantics

Correction:
@) Base case : v: 8 pages
@ General case: X Far too many nested

integrals and tedious (even perhaps
impossible)

25

L3t

®

Program transformation

proba f(pre_x) = pre_x + theta where let f_prior = gaussian(zeros, st)
rec init theta = sample(gaussian(zeros, st)) proba f_model(theta, pre_pos) = pre_pos + theta
and theta = last theta
let tracker_prior = f_prior

proba tracker(rad_obs) = pos where proba tracker_model(theta, rad_obs) = pos where
rec init pos = pos_init rec init pos = pos_init
and pos = sample(gaussian(f(last pos), sp)) and pos = sample(gaussian(f_prior(theta, last pos), sp))
and rad = g(pos) and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs) and () = observe(gaussian(rad, sr), rad_obs)
node main(rad_obs) = u where node main(rad_obs) = msg where
rec pos_dist = infer (tracker (rad_obs)) rec pos_dist = APF.infer(tracker_model, tracker_prior, rad_obs)
and msg = controller(pos_dist) and msg = controller(pos_dist)

APF.infer(f.model, f.prior, e) = infer(f.model(0, e) where rec init # = sample(f.prior))

26

Soundness of a Program
Transformation

Soundness proof

Soundness of a Program Transformation

Theorem

G,H + infer(f(e)) | d iff G',H I+ APF.infer(f.model, f.prior, e) | d

Co-iterative density semantics

< Base case :
“> General case: 0.1/ 4 0.9X: 8 pages (missing step: bisimulation from one time step to the
next one, interaction integral and states)

Relational density semantics

< Base case : v

2% General case: /: 2 pages !

27

Take home

Motto: Every programmer can perform data analysis by describing models as programs and
key operations.
W Van de Meent & al. Introduction to Probabilistic Programming. 2018

Semantics

e Might be useful
e Two equivalent density semantics for ProbZelus

e Proof of a program transformation for an optimized inference scheme

Future

e Denotational validation of inference in ProbZelus
e Higher order probabilistic synchronous programming

e Probabilistic control with differential equations

28

The category of measurable space and measurable functions is symmetric
monoidal but not closed.

By contradiction: Assume Meas is an SMCC: VX, Y,ev: YX ® X — Y is measurable.

Measurable spaces X is R with £x = P(X) any parts and Y is R with the X-algebra
generated by countable and cocountable subsets (closed by complement and countable unions
and intersections).

(RxR,P(R)®C(R)) — {0,1}
Diagonal function: h: ¢ (x, y) —1lifx=y ,

— 0 otherwise
A(h) : (R, P(R)) — ({0,1}®,%,v) is measurable
h = ev o A(h) is measurable as the composition of measurable functions

A ={(x,y) € R? | x =y} = h71(1) is measurable in P(R) @ C(R).

29

The category of measurable spaces and measurable functions is not closed.

By contradiction: Assume Meas is an SMCC: VX, Y,ev: YX ® X — Y is measurable.
We deduced that A = {(x,y) € R? | x = y} = h=1({1}) is measurable in P(R) @ C(R).
If W e P(R)®C(R), then there is B C R countable such that:
if there is (x,y) € W such that y ¢ B, then Vz ¢ B, (x,z) € W.
Proof: satisfied by basic measurable subsets and closed by countable intersection and unions

Consequence: A satisfies this property: there is B countable such that there is (x,x) € A
and x ¢ B. Yet, for any z ¢ B and z # x, (x,z) ¢ 0.

X CONTRADICTION

30

	Introduction
	Probabilistic semantics
	Semantics of Synchronous Probabilistic Programming

	Deterministic Synchronous Semantics
	Coiterative Semantics
	Relational Semantics
	Equivalent semantics
	Program Equivalence

	Probabilistic Synchronous Semantics
	Probabilistic Programming
	Probabilistic Semantics
	Co-iterative Density Semantics
	Relational Density Semantics
	Equivalent semantics
	Program Equivalence

	Soundness of a Program Transformation
	APF
	Soundness proof

	Conclusion

