Reactive Probabilistic Programming”

Guillaume Baudart Christine Tasson

L. Mandel E. Atkinson M. Pouzet
B. Sherman
C. Yuan
M. Carbin

*De la suite dans les IID (Trad. Guatto)

Uncertainty in embedded systems

Uncertainty iIn embedded systems

Synchronous languages

igh-level specitication language

Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade

Challenges
Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

Uncertainty in embedded systems

Synchronous languages

igh-level specitication language

Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade

Challenges
Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

Uncertainty in embedded systems

Synchronous languages

igh-level specitication language

Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade

Challenges
Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

Uncertainty in embedded systems

Synchronous languages
igh-level specification language o
Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade

INTRODUCTION TO

\ \‘ Stochastic
| C

Cha”enges OntrOl Theory

Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

Existing approaches
Manually implement stochastic controller: Can be error prone
Offline statistical tests: Requires up-to-date offline data

KARL J. ASTROM

Uncertainty in embedded systems

Synchronous languages

igh-level specification language g™ ¢
Generate correct-by-construction embedded code
Industrial tool: ANSYS Scade _ INTRODUCTION TO
\1 Stochastic

Noisy environment, perceived through noisy sensors
Interaction with other autonomous entities

/"‘<4

Existing approaches
Manually implement stochastic controller: Can be error prone
Offline statistical tests: Requires up-to-date offline data

Reactive Probabilistic Programming
Synchronous languages with probabilistic constructs
Make the probabilistic model explicit
Automatically learn posterior distributions from observations

KARL J. ASTROM

Reactive systems

Synchronous data-flow languages and block diagrams
Signal: stream of values
System: stream processor

gps

boat

controller

tracker

Reactive probabllistic systems

Synchronous data-flow languages and block diagrams
Signal: stream of values
System: stream processor

ProbZelus: add support to deal with uncertainty
Extend a synchronous language
Parallel composition: deterministic/probabilistic
Inference-in-the-loop
Streaming inference

gps

boat

X_dist

controller

infer

tracker

Part |. Programming in ProbZelus

Synchronous programming

Reactive Probabllistic Programming

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

Stream operations
Constant are lifted to stream:1 = 1, 1, 1,

Temporal operators: —, pre, fby
Control structures: reset/every, present, automaton

/ Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt. = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

nat

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

1 0
| |
nat nat
| |
1 2
t=0 t=1

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

1 0 3

l l l
nat nat nat

l l i

1 2 3
t=0 t=1 t =72

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

1 0 3 1

| | | |
nat nat nat nat

| | | |

1 2 3 4
t=0 t=1 t=2 t =3

3 Bourke, Pouzet 2013

Lustre — Lucid Synchrone — Zelus — ProbZelus

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

node nat v = cpt where cpt = if (n = 0) then v, else cpt ot |
rec cpt = v = pre cpt + 1 " &

1 0 3 1

| | | |
nat nat nat nat

| | | |

1 2 3 4
t=0 t=1 t=2 t =3

3 Bourke, Pouzet 2013

Demo

Probabillistic programming

Reactive Probabllistic Programming

10

Propabillistic programming languages

Propabillistic programming languages

General purpose programming languages extended with probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

11

Propabillistic programming languages

General purpose programming languages extended with probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

Multiple examples:
Church, Anglican (lisp, clojure), 2008
WebPPL (javascript), 2014

Pyro/NumPyro (python), 201/7/2019
Gen (julia), 2018
ProbZelus (Zelus), 2019

11

Propabillistic programming languages

General purpose programming languages extended with probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

Multiple examples:
Church, Anglican (lisp, clojure), 2008
WebPPL (javascript), 2014

Pyro/NumPyro (python), 201/7/2019
Gen (julia), 2018
ProbZelus (Zelus), 2019

More and more, incorporating new ideas:

New inference techniques, e.g., stochastic variational inference (SVI)
Interaction with neural nets (deep probabilistic programming)

11

infer : (@ = p) - a— pdist

infer

program

|

I
i
i
i
|

. (a = p) = a— pdist

infer

i
i
i
|

Ji)=o

. (a = p) = a— pdist

infer : (@ = p) - a— pdist

program sample
l
|
O
|
@
|
O
|

Ji)=o

|

o

12

infer : (@ = p) - a— pdist

program sample

|
i
|
|

i

i .
| |
1

sample

O
O
f) =o
./
|
03

infer : (@ = p) - a— pdist

l l
1]
1 /)
| me
I
| |

. (a = p) = a— pdist

infer

= 0

J(0)

infer : (@ = p) - a— pdist

program sample
l l
| |
O O
| |
@ sample @
| [\
O O O O
| L
| S3 s
fG) =o b (f(i) _ v) _ z{:ok_v}1
{o}

| ANy

0 010, 030, 050

infer : (@ = p) - a— pdist

program sample observe
l l
| |
O O
| |
@ sample @
| I\
O O O O
| L
| Sd Z) |
fy=o D (f(i) _ v) _ {ok_v}l
{or}

| ANy

0 010, 030, 050

12

infer : (@ = p) - a— pdist

program sample observe
l l l
| | |
O O O
| | |
O sample @ sample @
| I\ |
® @ C o observe O
| | o
S3 sample
)y =o p(fi)=v) = Ziam ,/
o) observe %
| T |
", 010, 0304 050 W33

12

infer : (@ = p) - a— pdist

program sample observe

l l l

| | |

O O O

| | |

O sample @ sample @

| I\ |

® @ C o observee @

| Ll]

S3 | sample ® ‘

i =0 p(f) =) = 2{0{,;:}1 |
Ok observe e %
| NI |
0 010y 0304 050q | .

12

infer : (@ = p) - a— pdist

program sample observe
| |
O O
| |
@ sample @
| I\
O O O O
| L
| Sd Z) |
fG) =o b (f(i) _ v) _ z{:ok_v}1
{or}

infer : (@ = p) - a— pdist

program sample observe
l l l
| | |
O O O
| | |
O sample @ sample @
| N [\
® @ © @ observe @ @ o
| Ll L
Sd , Sc Z w,
J=o p(fl) =) = 2{0::}1) S z{ik}}wk
k ODS
| AR SRy
0 010, 0304 050 010y 0304 050

Wi Wy, W3 W, WsWg
12

_ ...s,,..u.\ ‘..1 . ﬂ. ¥
B e

£ @

= IS

-

= S

&3 ©

hVa, S

M qV)

— ©

)

05 05

C = =

O & =

X, .

% | 5
D e
\ o~
C !
™
S g
=
=)

Bayes

Thomas Bayes (1701-1761)

https://en.wikipedia.org/wiki/Thomas_Bayes

13

Bayesian reasoning

Bayesian Inference: learn parameters from data
Latent parameter x
Observed data yq, ..., yn,

p(.fl?) p(y17 cee sy Yn | 'CE)
p(Y1s---»Yn)

p(x]|yr,...,yn) = (Bayes' theorem)

x p(x) p(y1,. .., Yn | T) (Data are constants)

Thomas Bayes (1701-1761)

13 https://en.wikipedia.org/wiki/Thomas_Bayes

Bayesian reasoning

Bayesian Inference: learn parameters from data
Latent parameter x
Observed data yq, ..., yn,

(@ | Yoo s) = P@) WL, Yn [T) goest theorem)

P(Y1,- - Yn)
posterior
X .— (Data are constants)
prior likelihood

Probabilistic constructs
x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d
infer m y:compute posterior distribution of m given y

13

Thomas Bayes (1701-1761)

https://en.wikipedia.org/wiki/Thomas_Bayes

Bayesian reasoning

Bayesian Inference: learn parameters from data
Latent parameter x
Observed data yq, ..., yn,

(@ | Yoo s) = P@) WL, Yn [T) goest theorem)

P(Y1,- - Yn)
posterior
X .— (Data are constants)
prior likelihood

let model (y1, ..., yn) =
let x = sample prior 1n
let () = observe (likelihood x) (y1, ..., yn) in Thomas Bayes (1701-1761)
X

let posterior = infer model (y1, ..., yn)

14 https://en.wikipedia.org/wiki/Thomas_Bayes

Probabllistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

More general than classic Bayesian Reasoning

let rec weird () =
let b = sample (bernoulli ~p:0.5) in
let mu = if (b = 1) then 0.5 else 1.0 1in
let theta = sample (gaussian ~mu ~sigma:1.0) 1in
1f theta > 0. then
observe (gaussian ~mu ~sigma:0.5) theta;

theta
else weird () Thomas Bayes (1701-1761)

let weird dist = infer weird ()

15

Probabllistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

More general than classic Bayesian Reasoning

let rec weird () = o001
let b = sample (bernoulli ~p:0.5) in ool
let mu = if (b = 1) then 0.5 else 1.0 1in sooo|
let theta = sample (gaussian ~mu ~sigma:1.0) 1in oo
1f theta > 0. then .

observe (gaussian ~mu ~sigma:0.5) theta; -

theta -
else weird ()

0.0006

0.0004

let weird dist = infer weird ()

0.0002

15

FProb/Zelus

Reactive Probabllistic Programming

16

Reactive probabillistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

()=, o
ORONRONS e

let proba tracker (y) = x where
rec X = x0 — sample(mv_gaussian(f *@ (pre x), q))
and () = observe(mv_gaussian(h *@ x, r), v)

17

Reactive probabillistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

OO O (D
ORONRONS e

let proba tracker (y) = x where
rec Xx = x0 — sample(mv_gaussian(f *@ (pre x), q))
and () = observe(mv_gaussian(h *@ x, r), v)

17

Reactive probabillistic programming

Probabilistic constructs
X = sample(d): introduce a random variable x of distribution d

observe(d, vy): condition on the fact that y was sampled from d
1infer m y: compute posterior distribution of m given y

()=, o
ONORON® e

let proba tracker (y) = x where
rec X = x0 — sample(mv_gaussian(f *@ (pre x), q))
and () = observe(mv_gaussian(h *@ x, r), V)

17

Reactive probabillistic programming

infer

tracker

18

Reactive probabillistic programming

y =7

|

infer

tracker

18

Reactive probabillistic programming

y =7

|

infer

tracker

18

Reactive probabillistic programming

y = 7 y = _3
infer infer
tracker tracker
p(xg | Yo) p(x | Yo» Y1)
5 0 5 -5 0 5

18

Reactive probabillistic programming

y =7 y = -3 y = 2
infer infer infer
tracker tracker tracker
P | yo) Py |y, y1) P [Yo, 15 ¥2)
5 0 5 -5 0 5 5 0

18

Reactive probabillistic programming

y =7 y = -3 y = 2
infer infer infer
tracker tracker tracker
P | yo) Py |y, y1) P [Yo, 15 ¥2)
5 0 5 -5 0 5 5 0

18

Demo

19

Part Il. Programming (mini) ProbZelus

The Zelus compiller

program.zls

|

Parser [—* Analyses [— Rewrites [—* Scheduling[—" OBC

zeluc

\4

Embedded code (OCaml)
mperative updates to the state

orogram.byte

21 Bourke, Pouzet 2013

(Generated code

(* a synchronous stream function with type 'a -D— 'b %)
(* is represented by an OCaml value of type ('a, 'b) node %)
type ('a, 'b) node =

Node:
{ alloc : unit = 's; (% allocate the state *)
step : 's = 'a = 'b; (* compute a step *)
reset : 's — unit; (* reset/initialize the state =*)

} - ('a, 'b) cnode

(*
let m = alloc () in
reset m;
while true do
let o = step m 1 1n
done

*)

22 https://github.com/INRIA/zelus/blob/main/lib/std/ztypes.ml

Mini ProbZelus runtime

type 'a distribution
type prob

val sample : prob * 'a distribution -AD— 'a

val observe : prob * 'a distribution * 'a -AD— unit

val infer : ((prob * 'a) -D— 'b) -S— 'a -D— 'b distribution

23

Mini ProbZelus runtime

type 'a distribution
type prob

val sample : prob * 'a distribution -AD— 'a
val observe : prob * 'a distribution * 'a -AD— unit

val infer : ((prob * 'a) -D— 'b) -S— 'a -D— 'b distribution

let proba tracker (y) = x where
rec Xx = x0 — sample(mv_gaussian(
and () = observe(mv_gaussian(

infer tracker vy

23

Mini ProbZelus runtime

type 'a distribution
type prob

val sample : prob * 'a distribution -AD— 'a
val observe : prob * 'a distribution * 'a -AD— unit

val infer : ((prob * 'a) -D— 'b) -S— 'a -D— 'b distribution

let proba tracker (y) = x where let node tracker (prob, y) = x where
rec Xx = x0 — sample(mv_gaussian(... rec Xx = X0 — sample(prob, mv_gaussian(
and () = observe(mv_gaussian(... —_— and () = observe(prob, mv_gaussian(

infer tracker vy infer tracker vy

23

Streaming inference

Reactive Probabllistic Programming

24

Importance sampling

observe
Approximate inference algorithm

Run a set of n independent executions
sample(d): draw a sample from a distribution
observe(d, x):add logpdf d X tothe current score

1nfer: gather (values, scores) to approximate the distribution
sample

.
i
[\
]

observe @ O
S¢S
W
. Z{OIFV} k
p (fi) =v) =
2: Wi
{Ok}
obs!

NNy

010, 0304 050
Wi Wy W3 W, Ws W

| —— T

25

Importance sampling

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

20

Importance sampling

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))

« 40
2 10O
=
2 -
)

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X
4 O
> 40
0 i)
2]
43

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0 t=1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X
4 O
> 40
0 i)
2]
43

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

| _pre X)
4 :ﬁtj? ---------------
0 A
o —
4 :v

20

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=20 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=1(=1 =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)

Importance sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=1(=1 =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1

Sven Sachsalber, Looking for a needle in the Haystack, 2014

Importance sampling

t =0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=1

sample (gaussian
observe (gaussian

Sven Sachsalber, Looking for a needle in the Haystack, 2014

Particle filter

Approximate inference algorithm : importance sampling, but...

Add a resampling step at each observe

Compute the score of the particles to compute a distribution
Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?
Continuation Passing Style (CPS)?
Clone the memory state?

28

Particle filter

Approximate inference algorithm : importance sampling, but...

Add a resampling step at each observe

Compute the score of the particles to compute a distribution
Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?
Continuation Passing Style (CPS)?
Clone the memory state?

type ('a, 'b) cnode =

Cnode:
{ alloc : unit — 's;
copy : 's = 's — unit;
step : 's - 'a = 'b;
reset : 's — unit;

} - ('a, 'b) cnode

28

https://github.com/INRIA/zelus/blolb/main/lib/std/ztypes.mi

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))

« 40
2 10O
=
2 -
)

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X
4 =103
> O
0 6
L,
4]

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =0 t=1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X
4 =103
> O
0 6
L,
4]

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

| _pre X)
4 :%tj? --------------
> <O
0 A
o
4 :v

29

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

X pre X X
P o T — i
> 10— =
0 E 0 —
2 7 b
7 47

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t =20 t =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
B ot
4 O 1 i
> 4O—— =29
0 : E 0 —
2 7 o
] 4]

Particle filter

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1 t =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X
B ot
4 O 1 i
> 4O—— =29
0 : E 0 —
2 3 b
] 4]

Demo

30

Delayed sampling

Simple Particles Filters can be impractical
Require lot of computing power
Poor approximation

Exact inference is often possible

Semi-Symbolic inference
Perform as much exact computation as possible
Fall back to a Particle Filter when symbolic computation fails

Main idea
Keep track of conjugacy relationships
Incorporate observations analytically
Sample only when necessary

31 Murray et al. 2018

Delayed sampling

Simple Particles Filters can be impractical

Require lot of computing power Example: Conjugate Gaussians
Poor approximation

x ~ N (g, 6p)

Exact inference is often possible y ~ N(x, o)
Semi-Symbolic inference x|(y=v)~ Ny, o)

Perform as much exact computation as possible 1

Fall back to a Particle Filter when symbolic computation fails 1 | 1 Ho v

N T\) \g o
Main idea

Keep track of conjugacy relationships 1 1 —2

Incorporate observations analytically 0| = |

Sample only when necessary gg o2

31 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0
sample (gaussian (0, 10))

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0
sample (gaussian (0, 10))

,/V(O,l())@

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

,/V(O,l())@

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

,/V(O,l())@

O

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

,/V(O,l())@

@

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Example: 2 Gaussians

/V(O, 10) x ~ N(ug, 6p)
y ~ N(x,0)

—AH- 2
1 N 1
o= —+—
! o5 0O’

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

r=0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

X

Example: 2 Gaussians

4/_-69’] 9) . x ~ N (U, 6)
/V(297,0995) y ~ N(x,0)

—AH- 2
1 N 1
o= —+—
! o5 0O’

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))

and () = observe (gaussian (x, 1), vy)
t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))

observe (gaussian (x, 1), 3)

X

AO10)
/V(Z.97,0.995)©

@

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 t=1

sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
________________________ e
#2970995)() O

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
________________________ e
#2970995)() O

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 =1
sample (gaussian (0, 10)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5)
X pre X X
AOAD) T e
#297.0995)() O
N(4.32,0.816)

ﬂ%%7£+<j:> -%4%+¥<j:>

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
ALO10) e S S ¥
/V(2.97,0.995)<\ .C* .
/ //V(4.32,0.816)

-%47¥+<j:> -%47¥+<j:>

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
=0 t=1 t =2

sample (gaussian (0, 10))
observe (gaussian (x, 1),

)

X pre X
) ——— A
#(2.97,0.995)(et

sample (gaussian (pre x, 1))
observe (gaussian (x, 1),

32

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), ..)

)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N (4.32,0.816)

Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

t=0 Unbounded resources
sample (gaussian (0, 10)) sample (gauy
observe (gaussian (x, 1), 3) observe (gal
Memor
35 10* | | | |y | N
X pre 5 103 — Y >D5 AAAAAA —
E 3 ‘ DS A‘AAA
o 10 — AAAA 7
7p) NS
A(2.97,0.995 o — 0 Lant
() f -- g 03 - AAAA‘ _
o NS
0 200 400 600 800 1000 1200 1400 1600
e :m - Step

32 Murray et al. 2018

Delayed sampling

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)
=0 t=1 t =2

sample (gaussian (0, 10))
observe (gaussian (x, 1),

)

X pre X
) ——— A
#(2.97,0.995)(et

sample (gaussian (pre x, 1))
observe (gaussian (x, 1),

32

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), ..)

)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N (4.32,0.816)

Murray et al. 2018

Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and ()

= observe (gaussian (x, 1), V)
t =10 t=1 t =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
DT T TN e e L ’ __--""'——:—_—_:-. --- %
#(297.0.995)(e G‘ ___ :
""""" TN (4.32,0.816)

32

Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))

and () = observe (gaussian (x, 1), vy)
=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)
X pre X X pre X X
A%0:10) . o . - S ’
H(2.97,0995)(s G e —— :

N(4.32,0.816)

-%47¥+<j:> -%%7¥+<j:>

32

Streaming
De‘ayed Samp“ng let proba tracker (y) = x where

rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

=20 =1 r =2
sample (gaussian (0, 10)) sample (gaussian (pre x, 1)) sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3) observe (gaussian (x, 1), 5) observe (gaussian (x, 1), ..)

X pre X X pre Xx X

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N(4.32,0.816)

32

Benchmarks

Baseline: SDS with 1,000 particles

fé? . 3,900 PF SDS e Particles
s 10) 650
£ : o
Z 102 200 150
3= : B e 6.=5
§ 101§
5 .
e 0
g 10 - _
= - 1 1
® ®
Beta- Gaussian- Kalman-1D Qutlier
Bernoulli Gaussian

Conclusions
SDS is always faster to match accuracy
Reduction in particle count outweighs symbolic overhead
SDS can be exact (1 particle)
PF Is impractical for advanced examples

33

Robot

>15,000

700

SLAM

MTT

Number of particles

Static analysis

Reactive Probabllistic Programming

34

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

35

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (0, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

Y

OnOnOa®
ONON®

35

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

Ko
X © & G

35

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec X sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

35

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

35

Bounded memory delayed sampling?

let proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

35

Yes!

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

36

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

OnOnOa®
ORORON®

36

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

A4

>

o

OnOnOa®
ORORG

36

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))

rec init
and x
and ()

observe (gaussian (x, 1), vy)

A4

>

o

v

> 4

&

36

(o
()

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where
rec init x@ = sample (gaussian (0, 10))
and x X0 — sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

A 4
o5

36

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where

rec init
and x
and ()

X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))
observe (gaussian (x, 1), vy)

A 4
o5

36

No!

Bounded memory delayed sampling?

let proba tracker (y) = x, x@ where

rec init
and x
and ()

X0 = sample (gaussian (0, 10))
X0 — sample (gaussian (pre x, 1))
observe (gaussian (x, 1), vy)

Can we determine if a given program will run in bounded memory?

A 4
o5

36

No!

Trace: abstract execution

let proba tracker (y) = x where

rec X
and ()

sample (gaussian (0, 10) — gaussian (pre x, 1))

observe (gaussian (x, 1), y)

trace state time
Xg — L X = X =0
Yo < Ko -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .

37

Trace: abstract execution

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time
random variable - Xo < L X = X =0

Yo < Ao -

observe y, ::

X < Xy i X = x, pre X = x =1

Y1 <X -

observe y; ::

.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .

37

Trace: abstract execution

let proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time
random variable - Xo < L X = X =0
Vo < Xy -
observation » observe y, ::
X < Xy i X = x, pre X = x =1
Vi < X i
observe y; ::
.XZ(_XI .. X = .XZ, pre X = xl t:2

Yy €= Xy .

37

Static analysis for delayed sampling

Semantic properties

m-consumed property unseparated paths property
Chains of variables before an observe are bounded Chains of variables referenced in the state are bounded

heorem: The program satisfies these two properties Iff it executes in bounded memory

38

Static analysis for delayed sampling

Semantic properties

m-consumed property
Chains of variables before an observe are bounded

unseparated paths property
Chains of variables referenced in the state are bounded

heorem: The program satisfies these two properties Iff it executes in bounded memory

Static analysis

Track variables introduced but not used yet

Track maximal path between pairs of variable in the state

Theorem: Any program that passes the analysis executes in bounded memory

38

m-consumed property

proba tracker (y) = x where

rec X
and ()

sample (gaussian (0, 10) — gaussian (pre x, 1))

observe (gaussian (x, 1), y)

trace

state

time

Xg < L
observe y, ::
X| < Xy i
observe y; ::
Xy < Xp i

X
[

X
Il

39

XI'

Xz,

pre X

pre X

=0

m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and () = observe (gaussian (x, 1), vy)

trace state time
Xg < L X = X, =0
Yo < Ao -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

x2<—xl .. X = .XZ, pre X = xl t:2

Yo =Xy e

39

m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and () = observe (gaussian (x, 1), vy)

trace state time
Xg < L X = X, —0
Yo < Xo

Yo Is O-consumed » observe y, ::
X < Xo - X = X1, Pre X = Xx =1
V< Xy i
observe y, ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e

39

m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X| < Xg i X = x, pre X = x, =1
V| < X
observe y, ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e

39

m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X < Xo - X = X1, Pre X = Xx =1
Xy Is 1-consumead - Y1 <X
y; is O-consumed » observe y; ::
Xy < X1 i X = Xy, Pre X = Xx; =2

Yo =Xy e

39

m-consumed property

proba tracker (y) = x where
rec x = sample (gaussian (@, 10) — gauss Chains of variables before an observe are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg < L X = X, —0
X Is 1-consumed > Vo — X i
Yo Is O-consumed » observe y, ::
X| < Xy - X = X1, Pre X = Xx =1
Xy Is 1-consumead - Y — X i Y@S'
y; is O-consumed » observe y; ::
Xy <= X1 1. X = x, pre x = x f =9

Yo =Xy e

39

Unseparated patnhs property

proba tracker (y) = x where
rec Xx = sample (gaussian (@, 10) — gaussian (pre x, 1))
and () = observe (gaussian (x, 1), vy)

trace state time

Xg — L X = X =0

Yo €< Xog --

observe y, ::

X
[

1|
S
o~
1
ek

Y1 €< X1 ..

observe y; ::

Xy € Xp i X

Yy €= Xy .

[

Ra
=\
1
®

40

Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
Xg — L X = X =0
Yo < Ko -

observe y, ::

X < Xy i X = x, pre X = x =1
Y1 <X -

observe y; ::

x2<—xl .. X = .XZ, pre X = xl t:2

Yy €= Xy .

40

Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time
X — L X = X =0
Yo < Ko -

observe y, ::

x1<—x0 .. X=.x1, preX=XO t=1
yi< X -

observe y; ::

Xy < Xp i X = x, pre x = x =2

Yy € Xy .

40

Unseparated patnhs property

proba tracker (y) = x where
rec x = sample (gaussian (0, 10) — gauss Chains of variables referenced in the state are bounded

and ()

observe (gaussian (x, 1), y)

trace state time

X — L X = X =0

Yo < Ko -

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1

e A Yes!
observe y; ::

Xy < Xp i X = x, pre x = x =2

Yy € Xy .

40

Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time
X — L X = X =0
Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=.x1, preX=XO t=1
Y Xp i X0 = x,

observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,

41

Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time
X — L X = X =0
Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1
Y Xp i X0 = x,

observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,

41

Unseparated patnhs property

proba tracker (y) = x where
rec init x@ = sample (gaussian (0, 10)) Chains of variables referenced in the state are bounded

and x = x0 — sample (gaussian (pre x, 1)
and () = observe (gaussian (x, 1), vy)

trace state time

X — L X = X =0

Vg < X i X0 = x,

observe y, ::

x1<—x0 .. X=x1, preX=XO t=1

Y Xp i X0 = x, I\J()!
observe y; ::

Xy < Xp i X = x, pre x = x =2

Vy < Xy i X0 = x,

41

Evaluation

m-consumed unsep. paths bounded mem.

output actual output actual output actual

Outlier X X
MTT X X

RN
RN
=
=

42

Evaluation

m-consumed unsep. paths bounded mem.

output actual output actual output actual

memory IS
probabllistically

bounded \
Outlier X X

MTT X X

RN
RN
=
=

42

Evaluation

m-consumed unsep. paths bounded mem.

output actual output actual output actual

memory IS
probabllistically

bounded \
Outlier X X

MTT X X

AN
AN
=
=

Memory Iis
always bounded

42

lake away

ProbZelus: a probabilistic synchronous languages
Bayesian inference on streams
Inference Iin the loop
Make the underlying probabilistic model explicit

Inference with bounded resources
Monte Carlo approximations: Importance sampling, particle filter
Semi-symbolic inference on streaming models

Static analysis
Can delayed sampling run in bounded memory?

More tomorrow!
What is the semantics of these programs?
How can we reason about program equivalence?

43

lake away

https://github.com/IBM/probzelus

ProbZelus: a probabilistic synchronous languages
Bayesian inference on streams
Inference Iin the loop

Make the underlying probabilistic model explicit PLDI20

Reactive Probabilistic Programming

Guillaume Baudart Louis Mandel Eric Atkinson
MIT-IBM Watson Al Lab, MIT-IBM Watson Al Lab, MIT
IBM Research IBM Research USA
USA USA
Benjamin Sherman Marc Pouzet Michael Carbin
MIT Ecole Normale Supérieure, MIT
USA PSL Research University USA

France

Abstract

Synchronous modeling is at the heart of programming lan-

ACM Reference Format:
Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sher-

guages like Lustre, Esterel, or SCADE used routinely for
implementing safety critical control software, e.g., fly-by-
wire and engine control in planes. However, to date these
languages have had limited modern support for modeling

man, Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic
Programming. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI '20), June 1520, 2020, London, UK. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3385412.3386009

nference with bounded resources
Monte Carlo approximations: Importance sampling, particle filter

probabilisi
tively proy
write contl

Semi-symbolic inference on streaming models

stream ful
determinis
a semantic
tional lang
inference ¢

OOPSLA'21

Statically Bounded-Memory Delayed Sampling for
Probabilistic Streams

ERIC ATKINSON, MIT, USA

the delayes GUILLAUME BAUDART, INRIA, Ecole normale supérieure - PSL University, France
streaming LOUIS MANDEL, MIT-IBM Watson AI Lab, IBM Research, USA
reactive ap CHARLES YUAN, MIT, USA
enables thi
efficient, b MICHAEL CARBIN, MIT, UsA

u [] CCS Conc¢ Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
models; programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced

a I C a I I a S I S language: a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to 115

Keywords unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be
ming, Stre extended to work in a streaming context. ProbZelus showed that while delayed sampling could be effectively

deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is

[] [] Permission§f not guaranteed to use a bounded amount of memory over the course of the execution of the program.
personal or ¢ > s e s . . .
not made ofl In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling

. bear this not will execute in bounded memory. The two conditions are dataflow properties of the core operations of delayed
t’}:‘z\:::‘;:“ sampling: the m-consumed property and the unseparated paths property. A program executes in bounded
PLDI 20, Jun memory under delayed sampling if, and only if, it satisfies the m-consumed and unseparated paths properties.
© 2020 Copy We propose a static analysis that abstracts over these properties to soundly ensure that any program that
ACMISBN 9 passes the analysis satisfies these properties, and thus executes in bounded memory under delayed sampling.
https://doi.of

More tomorrow! '
What is the semantics of these programs?
How can we reason about program equivalence?

43

CCS Concepts: » Theory of computation — Program analysis; Streaming models; « Software and its
engineering — Data flow languages.

Additional Key Words and Phrases: Probabilistic programming, reactive programming, streaming inference,
semantics, program analysis

ACM Reference Format:

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically Bounded-
Memory Delayed Sampling for Probabilistic Streams. Proc. ACM Program. Lang. 5, OOPSLA, Article 115
(October 2021), 28 pages. https://doi.org/10.1145/3485492

1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
2018; Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018; Gelman et al. 2015; Goodman
et al. 2008; Goodman and Stuhlmiiller 2014; Gordon et al. 2014; Huang et al. 2017; Mansingkha et al.
2018; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2015; Pfeffer 2009; Tran et al. 2017]. These
languages provide programming constructs and tools for probabilistic modeling and automated
inference. Researchers have developed probabilistic programming languages for several domains,

Authors’ addresses: Eric Atkinson, MIT, USA; Guillaume Baudart, INRIA, Ecole normale supérieure — PSL University,
France; Louis Mandel, MIT-IBM Watson Al Lab, IBM Research, USA; Charles Yuan, MIT, USA; Michael Carbin, MIT, USA.

B

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART115

https://doi.org/10.1145/3485492

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

