y 4

informatics g mathematics
JFLAs 2024 - Saint-Jacut-de-la-mer, France hua/-

January 31st 2024

Matthieu Sozeau
Inria & LS2N, University of Nantes

joint work with

Abhishek Anand Danil Annenkov Andrew Appel Simon Boulier Cyril Cohen
Bedrock Systems, Inc University of Copenhagen Princeton University University of Nantes Inria
Yannick Forster Joomy Korkut Jason Gross Meven Lennon-Bertrand Gregory Malecha
Inria Princeton University MIRI University of Nantes Bedrock Systems, Inc
Jakob Botsch Nielsen Zoe Paraskevopoulou Nicolas Tabareau Théo Winterhalter

University of Copenhagen University of Athens Inria & LS2N Inria & LS2N

MetaCoq is developed by (left to right) Abhishek Anand, Danil Annenkov, Simon Boulier, Cyril Cohen,
Yannick Forster, Jason Gross, Meven Lennon-Bertrand, Kenji Maillard, Gregory Malecha, Jakob Botsch
Nielsen, Matthieu Sozeau, Nicolas Tabareau and Théo Winterhalter.

Setting

DeepSpec 4-colour theorem

MetaCoq CertiCoq
/ Cog-malfunction

_————»m

Verlfled Coq Type-checker

CompCert

X

TYPE l

PRUUF CHECKER

Verified C Compiler COq
(Executable) Verified Coq to C/ WASM Compiler
Verified Web Server Verified Coq to Lambda/OCaml

(Executable) Compiler

Verified Colouring Program

. MetaCoqg: meta-theory Coq in Coqg
. Veritying Coq's type-checker
I1l. Veritying Coqg's type-and-proof erasure procedure

IV. CertiCoq: compilation of extracted programs, from Coqgto C
& WASM

V. Cog-malfunction: verified extraction for OCam|

What do you trust?

Trusted Core

ldeal Coqg Implemented Coq

What do you trust?

Trusted Core

A Dependent Type Checker for PCUIC
(18kLoC, 30+ years)

- Inductive Families w/ Guard Checking

R
0/

- Universe Cumulativity and Polymorphism

- ML-style Module System

- KAM, VM and Native Conversion Checkers Implemented Coq

+ OCaml’s Compiler and Runtime

The Reality

plemented Coq

ldeal Coqg

S
& ‘

ldeal Coqg

o

Reference Manual is semi-formal and partial

“One feature = n papers/PhDs” where 'n : fin 5
e.g. modules, universes, eta-conversion, guard
condition, SProp....

“Discrepancies” with the OCaml implementation

Combination of features not worked-out in detail.
E.g. cumulative inductive types + let-bindings in
parameters of inductives???

component: modules, primitive types

354 lines (314 sloc) 16.7 KB summary: Primitives are incorrectly considered convertible to anything by module subtyping
introduced: 8.11

Preliminary compilation of critical bugs in stable rel¢ 1mpacted released versions: V8.11.0-V8.18.0
e R ot el e e Gt g e impacted coqchk versions: same

fixed in: V8.19.0

found by: Gaetan Gilbert

GH issue number: #18503

exploit: see issue

v JPK. TN ! PO PESS WITH SFVERAL ADEM O ESTTOMC

risk: high if there is a Primitive in a Module Type, otherwise low

- =

To add: #7723 (r_co pu' = u* verse polymorphism), #769!

ol S el a0 B8 v SRl e

3 | Primitive _ | Undef _ | OpaqueDef _ -> cst
4 | Def c2 —>

Typing constructions |
5 (match cbl.const_body with

>
>
>
36 | Primitive _ | Undef _ | OpaqueDef _ -=> error NotConvertibleBodyField
component: "match" > | Def c1 =>
> (* NB: cbl might have been strengthened and appear as transparent.
A >
>

vy TOET

summary: substitutio f a let

introduce'v SAARS Anyway [check_conv] will handle that afterwards. x)
Jd. 7

impacted released versions: V8.3-V8.3pl2, V8.4-V8.4pl
impacted development branches: none

check_conv NotConvertibleBodyField cst poly CONV env cl c2))
| Undef _ | OpaqueDef _ -> cst
| Primitive _ -> error NotConvertibleBodyField

impacted coqchk versions: ? | Def c2 ->
fixed in: master/trunk/v8.5 (e583a79b5, 22 Nov 2015,

found by: Herbelin

(match cbl.const_body with
Primitive _ | Undef _ | OpaqueDef _ => error NotConvertibleBodyField
| Def cl ->
(* NB: cbl might have been strengthened and appear as transparent.
Anyway [check_conv] will handle that afterwards.)
check_conv NotConvertibleBodyField cst poly CONV env cl c2))

+ + + + + + + o+ o+

Our Goal: Improving Trust

ldeal Coqg Implemented Coq

Cog in MetaCoqg

Verified metatheory,
sound implementation

Part I: Coq's Calculus PCUIC

I IN
M MeifaC?Cl Implemented Coq
Formalization of

Part II: Verified Coq Coqgin Coq
5OPL20 ITP’19, JAR'20

MetaCoq in Practice
A meta-programming library

DEMO !

https://metacoq.github.io/tour/touring_metacoq.html

Part |
PCUIC

The (Predicative) Polymorphic Cumulative Calculus of
(Co-)Inductive Constructions

What we have...

vrev {A : Type@{i}t} {n m : nat} (v : vec@{1} A n) (acc : vec@{i1} A m)
match Y vec _ n vec@{i} A (n + m)
vnil acc
VCcons a n v’
1d X S n +m
coerce (vec A) 1dx (e : n + S m idx) (vrev v’ (vcons a m acc))

vrev_term : term :=

tFix [{]
dname := nNamed "vrev" ;
dtype := tProd (nNamed « A") (tSort (Universe.make'' (Level.Level "Top.160", false) []))
(tProd (nNamed "n") (tInd {| inductive_mind := "Coqg.Init.Datatypes.nat";

inductive_ind := 0 |} [])
(tProd (nNamed "m") (tInd {| ...

What we have...

EHEIVTEV {A : Type@{i}t} {n m : nat} (v : wvec@{1} A n) (acc : vec@{i} A m)
match Y vec _ n vec@{it A (n + m)
vnil acc
VCoNns a n Vv’
IS idx S n + m
coerce (vec A) idx (e :n + S m idx) (vrev v’ (vcons a m acc))

Specification

Example: Reduction

t) €T

) . —
L x o ¢ I X T t b - b’[x = t]

Structures
term, €, u ::=
- Rel (n : nat) | Sort (u : universe) | App (f a : term) ..

global_env, ¥ ::= []
X , (kername x InductiveDecl -idecl) (global environment)
2 , (kername x ConstantDecl cdecl)

global_env_ext ::= (global_env x universes_decl) (globalenvironment
with universes)

—
||

[] (local environment)
I, aname : term
-

, ahame = t ! U

Meta-Theory

Judgments

> ot > u, t->"u One-step reduction and its reflexive
transitive closure

> o T t . u, t <. u c-equwélénce+e.quallty or
cumulativity of universes

S o r e T-U, T=U Conversion and cumulativity
— T > T> A U->U AT =, U’

> -t T Typing

Well-formed global and
local environments

wf 2, wf_local 2 T

Structural Properties

Traditional de Bruijn lifting and substitution operations as in Coqg

Show that o-calculus operations simulate them (a la Autosubst) :
ren : (nat -> nat) -> term -> term
inst : (nat -> term) -> term -> term

Still useful to keep both definitions
Weakening and Substitution from renaming and instantiation theorems

Easy to lift to strengthening/exchange lemmas

universe Prop | SProp
| Type (ne_sorted_list (universe_level * nat)).

Typing = . I tSort u = tSort (Universe.super u)

No distinction of algebraic universes: more uniform than current Coq,
similar to Agda

universe constraint
universe level x Z x universe level.

Specification Global set of consistent constraints, satisfy a valuation in N.

LSet always has level 0, smaller than any other universe.
Impredicative sorts are separate from the predicative hierarchy.

Basic Meta-Theory

Global environment weakening
Monotonicity of typing under context extension: universe consistency is

monotone.

Universe instantiation
Easy, de Bruijn level encoding of universe variables (no capture)

Implementation
Longest simple paths in the graph generated by the constraints ¢, with

source LSet

Vi, lsp ¢ 1l Ll = 0 & satisfiable ¢ (A L, lsp LlSet 1)

The path to subject reduction

- 2] t T Requires transitivity of
Validity . .
conversion/cumulativity
2 [T tSort s
Context 2 I C T 2 A I More generally, context
Conversion —— — — — —— — cumulativity (contravariant)
2 A\ T T
Relies on injectivity of
Subject > B 1 T Y B 1 U type constructors, a
Reduction ——8 ¥ ————— consequence of

> [u T confluence

The traditional way

2 4 | T U parallel

A la Tait-Martin-L6f/Takahashi:
Diamond for ”Squagh" lemma
/S t \,
\V4 U C
\ / c)
=

.t)

Takahashi’s Trick

p : Tterm —-> term

An optimal one-step parallel
reduction function.

p(t)

p(t)

For a theory with definitions in contexts

One-step parallel reduction,
including reduction in contexts.

> [, x = t A, x := t2 % [, x (= t), b (A, x := t2), b’

> I, (X t b) A X t’ b’)

/r,t\
P : context -> term -> term - x
)

pctx : context -> context ,L¥§§§ Vv

pctx ', p (pctx IN) t

2

(P :

)

Mo

2

principality {Z I t}
term)

T

2

T

> = u

J

-

Principality and
changing equals for equals

<

J

a_noind t

U

[— t

2

)

T

-

|_

U

-
P x principal_type %

> t : Prop) >
[

TP

Informally: (well-typed) smaller terms
have more types than larger ones.

Justifies the change tactic up-to
cumulativity (excluding inductive type
cumulativity).

Cumulativity and Prop/SProp

Conversion identifying all predicative universes

o |_ ~
2 [T U (hence larger than cumulativity).

Informally: for two well-typed terms, if

they are syntactically equal up-to

cumulativity of inductive types, then

2 = U =4 T they live in the same hierarchy (Prop,
SProp or Type)

Required for erasure correctness
Alternative to Letouzey's restricted
system when Prop % Type

Assumptions

Typing, reduction and cumulativity: ~ TkLoC (verified and testable)

check_fix : global_env > context > fixpoint > bool

+ preservation by renaming/instantiation/equality/reduction
WIP Coqg implementation of the guard/productivity checkers

Assumptions

Ax1om normalisation :
V2T t, welltyped 2 T t » Acc (cored 2) t.

 Strong Normalization
Not provable thanks to Godel’s second incompleteness theorem.

- Consistency and canonicity follow easily.

-~ Used exclusively for termination of the conversion test

~ Could be inherited by preservation of normalisation from a stronger
system with a model

See Martin-Lof a la Coq (CPP’'24) for the state of the art!

Part ||
Veritying Type-Checking

Conversion

Obijective

Input Output

Conversion

Obijective

Input Output

isconv
V2T (uv AB : term),
(£ : T —u : A —>

(: T+~ v : B) >
(£ s ' —u =v) +
(¥ 5 T u =v —> 1)

Conversion
Algorithm

whnf whnf
ﬁ h

Conversion
Algorithm

Conversion
Algorithm

-*h”f‘

match

Aéﬁﬁ”'

w1th

Conversion

Completeness

[
match . . with

[+~
[+~

A

[+~
[+~

>

Conversion

Completeness

[- -

N

Conversion

Completeness

[- -

we conclude

N

using inversion lemmata and confluence

Conversion

Weak head reduction

Obijective

Input Output

term term

Weak head reduction

Obijective

Input Output

term term Prop

Weak head reduction

Obijective
Input Output
|II| 'II' lIIIHHIIl
term term Prop

weak_head_reduce : vV (u : term), > (v : term)., u —> v

Weak head reduction

Example
v e [

Definition foo = A(x:nat). x.

foo 0O

Weak head reduction

Example
- B s B

Definition foo = A(x:nat). x.

foo

foo — A(x:nat).x

Weak head reduction

Example
- o [

Definition foo = A(x:nat). x.

foo — A(x:nat).x

Weak head reduction

Example
- B s B

Definition foo = A(x:nat). x.

0

foo — A(x:nat).x

Weak head reduction

Example
Input - Output Vv

Definition foo := A(x:nat). x.

0

foo O —» (A(x:nat).x) 06 —» 0

Weak head reduction

Termination

Weak head reduction

Termination

Weak head reduction

Termination

Input Output

- -

Weak head reduction

Termination

Weak head reduction

Termination

(A(x:nat).x) @ —» 0

Weak head reduction

Termination

foo © —» (A(x:nat).x) 0O

(A(x:nat).x) @ — 0

Weak head reduction

Termination

foo © —» (A(x:nat).x) ©

foo 0 foo A(Xx:nat).x 0O 0

foo 0 1 foo (A(x:nat).x) @ — 0

Weak head reduction

Termination

foo © —» (A(x:nat).x) ©

foo 0 O foo (A(x:nat).x) @ —» 0

!/

-~
-
/W \

o

~ Lexicographic order of -> and rcC

Weak head reduction

Termination

foo © —» (A(x:nat).x) ©

foo 0 O foo (A(x:nat).x) @ —» 0
and foo 0 = foo 0
\ !/

o

~ Lexicographic order of -> and C

-~
-
/W \

Weak head reduction

Termination

!/

’/'\‘ Lexicographic order of -> and

Weak head reduction

Termination

\ |/
Y -
’/'\‘ Lexicographic order of -> and C

Weak head reduction

Termination

\|/ bUtp.l#p

-~
-
4 A

o

~ Lexicographic order of -> and C

Weak head reduction

Termination

i G

\|/ and p.l — p.l

-~
-
/W \

o

= Lexicographic order of —=> and C

Weak head reduction

Termination

fix f (n:nat). t end n

!/

’/'\‘ Lexicographic order of -> and

Weak head reduction

Termination

fix f (n:nat). t end

!/

’/'\‘ Lexicographic order of -> and C

Weak head reduction

Termination

\ |/
Y -
’/'\‘ Lexicographic order of -> and C

Weak head reduction

Termination

fix f (n:nat). t end

\4

\ |/

Ny o

- -

/W \

Weak head reduction

Termination

~gc Ig 0

@ o

Weak head reduction

Termination

~gc Ig 0

- -
’/'\‘ Lexicographic order of —> and an order on positions

LY,

Weak head reduction

Termination
’ / \

~gc Ig 0

LY,
-y -
’/'\‘ Lexicographic order of —> and an order on positions

Weak head reduction

Termination

0 B0

- -
’/'\‘ Lexicographic order of -> and an order on positions

LY,

Weak head reduction

Termination
U 1T, V 10,

(um, , stack_posum;) > (vm, , stack_pos v m,)

pos (u T,) pos (v T,)
\ |/

- -
’/'\‘ Lexicographic order of —> and an order on positions

Weak head reduction

Termination
U 1T, V 10,

(um, , stack_posum;) > (vm, , stack_pos v m,)

pos (u T;) pos (v T,)
N,

S -
’/'\‘ Dependent lexicographic order of => and an order on positions

Type Checking

Type Checking

\/
\/

Type Checking

Infer t —> | Check B =< A

Check t : A&

| Comudaty N

Type Checking

\/
\/

Infer t : B |—| Check B

<

A

"\ 'd

Check t : A&

MetaCog Check foo.

General technique to show decidability of an inductively-defined
relation/judgement

Specity inputs and outputs of a relation:

2 [t T
splits 1nto
Inference
2 [t T
(¥, ', £t well-formed inputs, T output)

and checking
> [t <T (2, ', £t, T well-formed inputs)

> [t T (£, T''and t are inputs, T output)

Inference: T is the minimal type of t (and is well-formed)

Checking has a single rule here (the only rule that is not directed by
the syntax of the term t)

M ™M
1 "1
—
c -

Cumu L

infer
{' T :
~{T

check

1 2

T

forall
term
term

> T t,
> o[-t
D

forall Z I £t T,

.t

T+ { ~ 2

proofs of equivalence:

infer check

check_typing

typing_check

2

[T
2 [T
2 [T

T

T
T

-> 2
-> 2
-> 2

Bidirectional derivations are syntax directed
Compressed and localised conversion rules.

Trivialises correctness and completeness of type inference

Principality follows from correctness and completeness of
bidirectional typing w.r.t. “undirected” typing

Completeness proof requires injectivity of type constructors
Correctness proof requires transitivity of conversion

Strengthening follows directly

Meven Lennon-Bertrand Bidirectional typing for the Calculus of Inductive Constructions

Part |l
Veritying Erasure

At the core of the extraction mechanism:

vrev {A : Type@{i}} {n m : nat} (v : vec A n)
(acc : vec A m)

8 . term o /\D,match,fix,cofix V vec _ n vec A (n + m)
vnil acc
vcons a n v’
) 1dx S n +m
Erases non-computatlonal content: coerce (vec A) idx (e : n + S m = idx)

(vrev v’ (vcons a m acc))

- Type erasure:

& (vrev) =

¢ (t Type) =
viFrev N m V acCcC
\V4
- Proof erasure: ——l acc

vcons a n v’

E (p P Prop) — 1dx S n +m

coerce O idx O (vrev v’ (vcons a m acc))

Singleton elimination principle

Erase propositional content used in computational content:

& (D eq _ VY eqg_refl b) = & (b)

coerce {A} {B : A -> Type) {x} (y : A)
(e : Xx =y) : Px ->Py :=
e
eq_refl P P

ViFev n m Vv acc
\Y;
vnil acc
vcons a n v’
1dXx S n+m
coerce O idx O (vrev v’ (vcons a m acc))

Singleton elimination principle

Erase propositional content used in computational content:

& (P €q _ Y eq_refl b) = € (b)
€ (coerce) ~ coerce xy := (funp = p)
€ (vrev) ~ VFev N m v acc
vni L acc

vcons a n Vv’ virev v’ (vcons a m acc)

t t t

nat
n /\ n irreduci
N nat /\ n €
n /\ n &€ N
¢ (n) = n

c Observational
Equivalence

t’ = VA

ble (strong normalization)

\\ (subject reduction and canonicity)
(standardisation)

(erasure correctness +
extracted naturals are equivalent to naturals)

First define a non-deterministic erasure relation, then define:
c > I t (wt : welltyped X I' t) EAst.term

Finally show that £'s graph is in the erasure relation. A few additional
optimizations:

Remove trivial cases on singleton inductive types in Prop

Compute the dependencies of the erased term to erase only the
computationally relevant subset of the global environment. l.e.
remove unnecessary proofs the original term depended on.

Inline projections, constructors as blocks (fully applied), unguarded
fixpoint reduction

Part IV
CertiCog

t vV (-|n N\ ,match,ﬁx,coﬁx)

Observational

certitoq Equivalence

t’ v’ (in C)

With Canonicity and SN:

t nat
=> t n nat (n € N)
=> t N nat

=> CertiCoqg (t) n

Strip parameters (e.g. nil instead of nil nat)

Let-bind definitions 1n the global environment

Compile case-analysis to switch + projections T V
ANF or CPS translation

Closure conversion

Defunctionalization (first-order program)

Inlining and shrinking (remove administrative redexes)

Generation of C code, linked with a certified garbage

collector Observational
Equivalence

We get back a C program with the same results as the Cog
program (but optimised behavior)

Supports “Extract Constant” to realize Coqg axioms in C (e.g. primitive
integers and floating point values)

VeriFFI| project to link verified C code with CertiCog-compiled Coqg
programs (e.qg. efficient imperative data structures)

From C-light, we can use the certified CompCert compiler to produce
certified assembly code, or LLVM/gcc (standard C compilers)

Alternative target: WASM

Part V
cog-malfunction

Definition function_or N:V (b:B),if bthen B — B else N :=

funb = match bwith true = funx = x| false = S 0 end.
(*¥*x val function_or_N : B — O0Obj.t *x%)
let function_or_N = function | True — Obj.magic (fun x — x)|False — Obj.magic (S 0)

Definition apply_function_or N:Vb:B, (if bthenB — BelseN) — B :=

funb = match bwith true = fun f = f true | false = fun _ = false end.
(¥*x val apply_function_or_ N : B —» __ — B *x%)

let apply_function_or_Nb f =matchbwith |True — Obj.magic f True | False — False

Definition assumes_purity:(unit — B) — B :=
fun f = apply_function_or N (f tt) (function_or_N (f tt)).

(x*x val assumes_purity : (unit —» B) — B *%)
let assumes_purity f = apply_function_or_N (f ()) (function_or_N (f ()))

let impure : unit —» B = let x: B ref = ref False in
fun _ — match !x with False — (x := True; False) | True — True

assumes_purity impure
(** Segmentation fault: 11 *x%)

“Repeat after me: "Obj.magic is not part of the OCAML language"”

Xavier Leroy

Typed extraction to a weaker type system is bound to be unsafe
Restrict correctness to a subset of types that can be faithfully extracted

Only first-order inductive types without indices (e.g. nat) and functions
between them (no higher-order) can appear in the extracted

Extracted can do anything, in an untyped way

Provide a strong interoperability theorem: any OCaml use of the
extracted Coq value will be safe

2% github.com/stedolan/malfunction

[0 README 2[5 License

Malfunction is a high-performance, low-level untyped program representation, designed as a target for compilers
of functional programming languages.

Malfunction is a revolting hack, exposing bits of the OCaml| compiler's guts that were never meant to see the light
of day.

"Hello, World" looks like this:

(module
(_ (apply (global $Stdlib $print_string) "Hello, world!\n"))
(export))

AST of untyped OCaml terms (including refs, ...)
Using HOAS, tricky mutual fix point representation

Compiler from malfunction to cmxs (ocaml object files), providing a
trusted .mli interface.

A reference ported to Coq (named variables variant of
AD)

We derive a big-step operational semantics (with a heap and
environment), producing malfunction values (closures, blocks for
constructors, or primitive ints/floats), agreeing with the interpreter

1 vV (-|n N\ ,match,f'ix,cof'ix)

Observational

cog-malfunction .
Equivalence

t’ dv’ (in OCaml/malfunction)

With Canonicity and SN:

t nat
=> t n nat (n € N)
=> t N nat

=> cog—-malfunction (t) n

t nat -> nat u nat T U N

Mapply (cog-malfunction t) (cog-malfunction u) n

Uses a step-indexed realisability semantics for the subset of ocam|
types we consider

Requires to show that functions compiled from Coq are pure (don't
touch the heap).

IIHHHHIH!HHHHII
Coq kernel

mplement

name annotatlion

Malfunction

.mlf file

154

Table 1. Time in milliseconds for 50 runs of the individual benchmarks.

63.5
951.8
150.1

651.8
985.9

Summary

Trusted Core

ldeal Coq

b

N

Implemented Coq

MetaCoq

Verified Coq

N

Verified Co\ N

infer.

Spec: 80kLoC
Proofs: 120kLoC
Comments: 30kLoC

Summary

N

MetaCoq

Verified € + CertiCoqg

infer.

Verified Core

Implemented Coqg

ldeal Coqg

~ MetaCoq also includes translations (WIP parametricity
translation proof, derivation of principles for inductives)

- WIP integration of SProp, rewrite rules (also in Coq!)

- See metacoqg.github.io for documentation, papers and
examples

MetaCoq

~ Part of the Coq platform

http://metacoq.github.io

MetaCoq

\Y

erified Core

<

Implemented Coq

ldeal Coq

- MetaCoq formalizes the metatheory and proof-checking
algorithm Coq in Coq

~ Verified extraction and CertiCoq allow to produce verified C
code from any Coq program. Safe interoperability with

OCaml is possible.

- Verified erasure + CertiCoq + CompCert allow to extract from
MetaCoq an efficient, certitied proof-checker

