

An introduction to Iris

Jean-Marie Madiot & François Pottier

JFLA 2026

1 What is Iris (About)?

2 Basic Connectives

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

A (Very Partial) History

To prove the *safety* and *correctness* of programs,

A (Very Partial) History

To prove the *safety* and *correctness* of programs,

- in the beginning there was Floyd-Hoare logic (1967–1969)
 - *propositions* about the machine's state

A (Very Partial) History

To prove the *safety* and *correctness* of programs,

- in the beginning there was Floyd-Hoare logic (1967–1969)
 - *propositions* about the machine's state
- then there was Separation Logic (1999–2002)
 - *assertions* about *fragments* of the machine's state
 - *separation* and *ownership*
 - *[reasoning should be] confined to the cells that the program actually accesses* — O'Hearn, Reynolds, Yang (2001)

A (Very Partial) History

Then it became apparent that SL could be pushed much further.

A (Very Partial) History

Then it became apparent that SL could be pushed much further.

- Concurrent Separation Logic (2004–2007)
 - shared *locks* mediating access to exclusive assertions
 - guaranteed *data race freedom*

A (Very Partial) History

Then it became apparent that SL could be pushed much further.

- Concurrent Separation Logic (2004–2007)
 - shared *locks* mediating access to exclusive assertions
 - guaranteed *data race freedom*
- Iris (2015–2017)
 - separation never truly exists; a *fiction* of separation suffices
 - *stability* of assertions is key
 - monolithic machine state, separable *ghost state*, and *invariants*

This Introduction to Iris

Iris is a large and complex system ([paper](#); [lecture notes](#); [tutorial](#)).

- As of today, [145 Iris-related papers](#) listed

We wish to

- introduce just the key ideas
- give demonstrations of Iris at work

Two lectures:

- #1 (FP): basic concepts; locks; invariants
- #2 (JMM): user-defined separable ghost state

What is Logic About?

Logic involves *propositions* about an unchanging mathematical world.

A proposition has a *truth value*: it is either *true* or *false*, and forever so.

$\text{even}(1)$ — *false*

$\text{even}(2)$ — *true*

$\forall n : \mathbb{N}. \exists p : \mathbb{N}. n \leq p \wedge \text{prime}(p)$ — *true*

$\forall x : \mathbb{N}. \text{even}(x) \rightarrow \text{odd}(x + 1)$ — *true*

The rules of logic ensure that only true propositions have proofs.

What Logic for a Changing World?

Can one make *assertions* about a changing world?

There is nobody in the street.

What Logic for a Changing World?

Can one make *assertions* about a changing world?

There is nobody in the street.

— *may be true now*

What Logic for a Changing World?

Can one make *assertions* about a changing world?

There is nobody in the street.

- *may be true now*
- *could become false at any time*
- *somebody could turn the corner*
- *an unstable assertion about a changing world*

What Logic for a Changing World?

Can one make *stable, local* assertions about a changing world?

My room is painted white.

— *true now*

What Logic for a Changing World?

Can one make *stable, local* assertions about a changing world?

My room is painted white.

- *true now*
- *perhaps not true forever*
- *I might decide to paint it a different color*

What Logic for a Changing World?

Can one make *stable, local* assertions about a changing world?

My room is painted white.

- *true now*
- *perhaps not true forever*
- *I might decide to paint it a different color*
- *but no one else may do so (I own this room)*

What Logic for a Changing World?

Can one make *stable, local* assertions about a changing world?

My room is painted white.

- *true now*
- *perhaps not true forever*
- *I might decide to paint it a different color*
- *but no one else may do so (I own this room)*
- *a **stable** assertion*
- *expressing **knowledge** about the world,*
- ***permission** to change the world,*
- *and **absence of permission** for others to change it*

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

I was born on a Monday.

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

I was born on a Monday.

— *true*

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

I was born on a Monday.

- *true*
- *was not true 60 years ago*

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

I was born on a Monday.

- *true*
- *was not true 60 years ago*
- *nobody can change this fact*

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

I was born on a Monday.

- *true*
- *was not true 60 years ago*
- *nobody can change this fact*
- a *stable assertion about a changing world*

An example of an assertion that *becomes true* at some point in time and thereafter *persists* forever.

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

Over 129,864,880 books have been published.

- *true*
- *was not true 60 years ago*
- *nobody can invalidate this fact*
- a *stable assertion about a changing world*

More Examples of Stable Assertions

Can one make *stable, local* assertions about a changing world?

Over 129,864,880 books have been published.

- *true*
- *was not true 60 years ago*
- *nobody can invalidate this fact*
- a *stable assertion about a changing world*
- *though anyone has permission to publish new books*

Stable because this aspect of the world evolves in a *monotonic* way.

What is a Stable Assertion?

An assertion should

- express *knowledge* about (a fragment of) the world
- represent *permission* to change (this fragment of) the world
- represent *interdiction* for others to make incompatible changes

An assertion is *stable* if it contains *enough interdiction* to justify the knowledge and permission that it offers.

What is Separation Logic?

Separation Logic (SL) is a logic where *every assertion is stable*.

- SL = Stability Logic?

What is Separation Logic?

Separation Logic enables *local reasoning* about a composite system.

- each participant has *partial knowledge* of the world and *partial permission* to change the world
- one participant's knowledge is never invalidated by another participant's actions
- the share (knowledge and permissions) of one participant is compatible with the share of every other participant
- at all times, *the conjunction of all shares* is consistent

1 What is Iris (About)?

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

The world is partly *physical*, partly *ghost*.

Typical examples of basic assertions:

- a *physical memory cell*, $x \mapsto v$
 - the points-to assertion (Reynolds, 2002)
- an *immutable* physical memory cell, $x \mapsto_{\square} v$
 - the persistent points-to assertion (Friis Vindum and Birkedal, 2021)
- a *ghost memory cell*, \boxed{a}^γ
 - new in Iris 1 (Jung et al., 2015)

I want to describe five fundamental connectives:

- *conjunction*, $A * B$
 - decomposes a view of the world into several parts
- *implication*, $A \rightarrow B$
 - change one's view of the world – not the world itself
- *persistence*, $\square A$
 - means “forever A ”
- *update*, $\Rightarrow B$
 - changes the ghost world
 - the binary form $A \Rightarrow B$ is sugar for $\square(A \rightarrow \Rightarrow B)$
- *execution*, $\text{ex } s \{B\}$
 - changes the ghost and physical world
 - the Hoare triple $\{A\} s \{B\}$ is sugar for $\square(A \rightarrow \text{ex } s \{B\})$

I will not discuss today:

- *pure* assertions $\top P \top$ where P is a proposition
- *quantifiers* $\forall x.A, \exists x.A$
- the *later* modality $\triangleright A$
- user-defined assertions, which can
 - *inductive*: linked list (segment), tree, iterated conjunction
 - *co-inductive*
 - *guarded recursive*: ex

I will discuss later today:

- *locks*, first considered primitive, then user-defined
- *invariants*

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

Conjunction $A * B$ means

- A holds and B holds
- and one can act on one side *without disturbing* the other—*stability*.

This is visible in the way \rightarrow and \Rightarrow and ex interact with $*$.

It is sometimes called “separating” conjunction

- because $x \mapsto v * y \mapsto v'$ implies $\lceil x \neq y \rceil$

but the key point is stability.

Conjunction is associative and commutative. *True* is its unit.

It is *not idempotent*:

- Some assertions are not duplicable: in general, $A \not\vdash A * A$
- Every persistent assertion is duplicable: $\Box A \vdash \Box A * \Box A$

The logic is *affine*, as opposed to linear: $A \vdash \text{True}$.

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

Implication (Magic Wand)

Implication $A \rightarrow B$ means:

- by *consuming* A
- and by *consuming* $A \rightarrow B$ as well
- you can get B .

Think of *two puzzle pieces* that fit together.

Implication changes *your view* of the world, not the world itself.

- $x \mapsto 0 \rightarrow \exists y. x \mapsto y * \lceil 0 \leq y \rceil$
- $x \mapsto y * y \mapsto z \rightarrow \text{listseg}(x, z)$
- $x \mapsto y \rightarrow (y \mapsto z \rightarrow \text{listseg}(x, z))$

Basic Laws of Implication

Here is one formulation (Ishtiaq and O'Hearn, 2001):

$$\frac{R * A \vdash B}{R \vdash A -* B}$$

$$\frac{R \vdash A -* B \quad R' \vdash A}{R * R' \vdash B}$$

$$\frac{A \vdash A' \quad B \vdash B'}{A * B \vdash A' * B'}$$

Basic Laws of Implication

Here is one formulation (Ishtiaq and O'Hearn, 2001):

$$\frac{R * A \vdash B}{R \vdash A \multimap B}$$

$$\frac{R \vdash A \multimap B \quad R' \vdash A}{R * R' \vdash B}$$

$$\frac{A \vdash A' \quad B \vdash B'}{A * B \vdash A' * B'}$$

This should be easier to read:

$$\begin{aligned} & R \multimap A \multimap B \\ \equiv & (R * A) \multimap B \quad \text{currying/uncurrying} \end{aligned}$$

$$\begin{aligned} & (A \multimap B) * A \multimap B \\ & \text{application} \end{aligned}$$

$$\begin{aligned} & (A \multimap B) \\ \multimap & (A * R \multimap B * R) \\ & \text{stability (frame)} \end{aligned}$$

$$\begin{aligned} & (R * A \multimap B) * R \\ \multimap & A \multimap B \\ & \text{partial application} \end{aligned}$$

Non-Separating Conjunction

$A \wedge B$ is an external choice:

- you can have A *and* you can have B
- but you can have *only one* of them.

$A \wedge B$ is equivalent to

$$\exists S. \quad S * (S \multimap A) * (S \multimap B)$$

Here is a proof.

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

$\square A$ means that A is forever true.

An assertion is *persistent* if it can be written in the form $\square A$.

- by definition, $\text{Persistent}(P)$ means $P \vdash \square P$

Intuitively, a proof of $\square A$ is a proof of A that uses persistent facts only.

$$\frac{\square A \vdash B}{\square A \vdash \square B}$$

introduction

$$\frac{\square A}{\neg A}$$

elimination

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

A binary update $A \Rightarrow B$ means:

- by consuming A
- and by *changing the world*
- you can get B .

It is sugar for $\square(A \multimap B)$.

A unary update $\Rightarrow B$ means

- permission to *change the world* to get B .

Caveat: there are several notions of update; I am blurring the distinction.

An update is used to allocate a new ghost cell:

- $\text{True} \Rightarrow \exists \gamma. \boxed{a}^\gamma$

and to update a ghost cell (simplified rule—see JMM's lecture):

- $\boxed{a}^\gamma \Rightarrow \boxed{b}^\gamma$

An update is used to open and close an invariant (later today).

Basic Laws of Binary Update

Binary update behaves very much like implication:

$$\begin{array}{ccc} R \Rightarrow A \Rightarrow B & & (A \Rightarrow B) \\ \equiv (R * A) \Rightarrow B & (A \Rightarrow B) * A \Rightarrow B & -* (A * R \Rightarrow B * R) \\ \text{currying/uncurrying} & \text{application} & \text{stability (frame)} \end{array}$$

$$\begin{array}{c} (R * A \Rightarrow B) * R \\ -* A \Rightarrow B \\ \text{partial application} \end{array}$$

Basic Laws of Unary Update

It is easier to remember just the laws of unary update:

$$A \dashv\ast \Rightarrow A$$

return (reflexivity)

$$A \dashv\ast \Rightarrow A \dashv\ast \Rightarrow A$$

join (transitivity)

$$A \dashv\ast B$$
$$A \dashv\ast (\Rightarrow A) \dashv\ast (\Rightarrow B)$$

covariance (map)

$$A \dashv\ast (\Rightarrow B)$$
$$A \dashv\ast \Rightarrow (A \dashv\ast B)$$

stability (strength)

One sums up these laws by saying: unary update is a strong monad.

An Interesting Non-Law

Update *does not commute* with universal quantification:

$$\forall x. \Rightarrow A \quad \not\vdash \quad \Rightarrow \forall x. A$$

An intuitive explanation is: a ghost cell can be updated *in any way* you wish but not *in all ways* at once:

$$\begin{array}{ccc} \boxed{a}^\gamma & \text{entails} & \forall b. \Rightarrow \boxed{b}^\gamma \\ \boxed{a}^\gamma & \text{does not entail} & \Rightarrow \forall b. \boxed{b}^\gamma \end{array}$$

This is the same reason why the *value restriction* exists in ML.

This also explains the lack of an *intersection rule* in Iris:

$$\forall x. \boxed{\text{ex}} \in \{A\} \quad \not\vdash \quad \boxed{\text{ex}} \in \{\forall x. A\}$$

2 Basic Connectives

Conjunction

Implication

Persistence

Update

Execution

A Programming Language

So far everything has been about logic, not about programming.

Now assume that *a programming language* (syntax, semantics) is given.

For example, it might be

- a WHILE language, whose statements return no result;
- a λ -calculus, whose expressions return a value.

The assertion `ex s {B}` means

- there is *permission* to *execute* the statement *s* *once*
- this is safe (execution won't crash)
- this may change the (physical and ghost) world
- and if/once execution terminates, *B* will hold.

In the Iris literature, `ex` is named *wp* for “weakest precondition”.

In *dynamic logic* (Pratt, 1974) it is written $[s]B$.

I like `ex` $s \{B\}$ because it can seem to mean

- “out of s one gets B ”
- “executing s establishes B ”

The Hoare triple, or Separation Logic triple,

$$\{A\} \; s \; \{B\}$$

is sugar for

$$\square(A \rightarrow * \text{ ex } s \; \{B\})$$

Basic Laws of Execution

An update is a special case of an execution assertion.

$$\begin{aligned} & \Rightarrow B \\ \equiv & \text{ex } \text{skip } \{B\} \\ & \text{skip (return)} \end{aligned}$$

$$\begin{aligned} & \text{ex } s_1 \{ \text{ex } s_2 \{B\} \} \\ \equiv & \text{ex } (s_1; s_2) \{B\} \\ & \text{sequencing (join)} \end{aligned}$$

$$\begin{aligned} & A \multimap B \\ \multimap & \text{ex } s \{A\} \multimap \text{ex } s \{B\} \\ & \text{weakening (map)} \end{aligned}$$

$$\begin{aligned} & A * \text{ex } s \{B\} \\ \multimap & \text{ex } s \{A * B\} \\ & \text{stability / frame (strength)} \end{aligned}$$

Execution Absorbs Updates

Execution absorbs updates:

$$\Rightarrow \text{ex } s \{B\}$$

-* $\text{ex } s \{B\}$

update before execution

$$\text{ex } s \{\Rightarrow B\}$$

-* $\text{ex } s \{B\}$

update after execution

These laws because the *definition* of ex involves \Rightarrow .

Structured parallel composition and *thread creation* are easy to describe:

$\text{ex } s_1 \{B_1\} * \text{ex } s_2 \{B_2\}$	$\text{ex } s \{B\}$
$\text{ex } (s_1 \parallel s_2) \{B_1 * B_2\}$	$\text{ex } (\text{fork } s) \{ \text{True} \}$

The second rule offers no way of waiting for the child thread to finish so as to obtain B . It is up to the user to implement such a mechanism using channels, references, etc.

If the programming language has *expressions* (which return values) then one uses $\text{ex } e \{ \psi \}$ where $\psi : \text{Val} \rightarrow i\text{Prop}$.

$\text{ex } e \{ y.B \}$ means

- there is *permission* to *execute* the expression e *once*
- and (if it terminates then) it returns a value y such that B holds.

The skip and sequencing rules become

$$\begin{array}{ll} \Rightarrow \psi v & \equiv \text{ex } e_1 \{v. \text{ex } [v/x]e_2 \{\psi\}\} \\ \equiv \text{ex } v \{\psi\} & \equiv \text{ex } (\text{let } x = e_1 \text{ in } e_2) \{\psi\} \\ \text{return} & \text{bind} \end{array}$$

These rules are used to reason *step by step* about a program.

They allow *symbolic execution* inside the proof assistant.

1 What is Iris (About)?

2 Basic Connectives

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

The assertion $x \mapsto v$ describes a *reference* (a mutable memory block).

This assertion means:

- the reference at address x *currently contains* the value v
- *permission* to read and write this reference
- interdiction for anyone else to read or write this reference

This assertion is *exclusive*: $x \mapsto v * x \mapsto v \vdash \text{False}$.

More generally, there is *separation*: $x \mapsto v * y \mapsto v' \vdash \neg x \neq y$.

This assertion is *not duplicable*: $x \mapsto v \not\vdash x \mapsto v * x \mapsto v$.

Operations on References

References can be *allocated*, *read*, and *written*.

$\text{ex } (\text{ref } v) \{v'. \exists \ell. \lceil v' = \ell \rceil * \ell \mapsto v\}$
create

$\ell \mapsto v$
 $\text{---*--- } \text{ex } (!\ell) \{v'. \lceil v' = v \rceil * \ell \mapsto v\}$ read

$\ell \mapsto v$
 $\text{---*--- } \text{ex } (\ell := v') \{_. \ell \mapsto v'\}$ write

In a language without GC, there would be a *deallocation* operation.

Operations on References, Texan Style

This postcondition-passing style makes the rules easier to apply:

$$\begin{array}{ll} \mathit{True} * (\forall \ell. \ell \mapsto v \rightarrow \psi \ell) & \ell \mapsto v * (\ell \mapsto v \rightarrow \psi v) \\ -* \text{ ex } (\text{ref } v) \{ \psi \} & -* \text{ ex } (!\ell) \{ \psi \} \\ & \text{create} & \text{read} \end{array}$$

$$\begin{array}{l} \ell \mapsto v * (\ell \mapsto v' \rightarrow \psi ()) \\ -* \text{ ex } (\ell := v') \{ \psi \} \\ & & \text{write} \end{array}$$

Instead of saying: the postcondition of `write` is $\ell \mapsto v'$,
say: it is anything you want, provided it is implied by $\ell \mapsto v'$.

Making a Reference Immutable

A mutable reference can be forever turned into an immutable one.

$$\begin{array}{c} \ell \mapsto v \\ \Rightarrow \ell \mapsto_{\square} v \\ \text{freeze} \end{array} \quad \begin{array}{c} \ell \mapsto_{\square} v \\ \rightarrow * \text{ ex } (!\ell) \{ v'. \lceil v' = v \rceil \} \\ \text{read frozen} \end{array}$$

The two views cannot co-exist: $\ell \mapsto v * \ell \mapsto_{\square} v'$ implies *False*.

A write access to a reference requires a mutable points-to assertion.

A read access requires a (mutable or immutable) points-to assertion.

Therefore a write and a read *can never* be simultaneously enabled!

- *Data-race freedom* is guaranteed. (Good!)
- Communication between threads is *impossible*. (Bad!)

These points hold even if *read-modify-write* operations (FAA, CAS, etc.) are allowed, as they also require an exclusive points-to assertion.

To allow threads to interact, one must introduce

- synchronisation primitives: for example, *locks*; or
- shared *invariants*.

1 What is Iris (About)?

2 Basic Connectives

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

In OCaml, an abstract type of locks could look like this:

```
type lock
(* a lock can be shared between several threads *)
val newlock : unit -> lock
val acquire : lock -> unit (* acquire access permission *)
val release : lock -> unit (* release access permission *)
```

The type-checker does not know *what data structure* a lock protects, so cannot check that acquire and release are correctly used.

A stack, protected by a lock, could look like this:

```
type 'a stack =
  { data: 'a list ref; lock: lock } (* lock protects data *)

let make () =
  let data = ref [] in
  let lock = newlock() in
  { data; lock }

let push x stack =
  acquire stack.lock;           (* acquire permission *)
  stack.data := x :: !stack.data; (* access the data *)
  release stack.lock            (* release permission *)
```

To verify the safety of this code, *reasoning rules for locks* are needed.

There exists $isLock : Val \rightarrow iProp \rightarrow iProp$ such that:

$$\begin{array}{c}
 R \\
 \begin{array}{ccc}
 \text{Persistent} (isLock \vee R) & \xrightarrow{*} & \text{ex } (\text{newlock}()) \{v. isLock \vee R\} \\
 \text{share} & & \text{create}
 \end{array} \\
 \\[10pt]
 \begin{array}{ccc}
 isLock \vee R & & isLock \vee R * R \\
 \xrightarrow{*} \text{ex } (\text{acquire } v) \{R\} & \xrightarrow{*} & \text{ex } (\text{release } v) \{True\} \\
 \text{acquire} & & \text{release}
 \end{array}
 \end{array}$$

From the user's point of view, acquire *produces* R ; release *consumes* R .

A stack, protected by a lock, could look like this:

```
type 'a stack =
  { data: 'a list ref; lock: lock } (* lock protects data *)

let make () =
  let data = ref [] in
  let lock = newlock() in
  { data; lock }

let push x stack =
  acquire stack.lock;           (* acquire permission *)
  stack.data := x :: stack.data; (* access the data     *)
  release stack.lock            (* release permission *)
```

See [a proof of safety](#) of this code.

The permission to access the data appears only within critical sections

- between release and acquire

so *data-race freedom* is still guaranteed

- even though interactions between threads are now possible

One could improve this Lock API in several ways:

- separating the *creation* of the lock and the *initialization* of the assertion R
- use *fractions* to keep track of sharing and allow *canceling* a lock whose fraction is 1
- introduce an assertion *isLocked* v to *prevent releasing a lock that one does not hold*
 - under our API, such a mistake is possible if $R * R \not\vdash \text{False}$
- view *isLocked* v as an *obligation* to eventually release the lock
 - current Iris does not allow this, as it is affine
 - current Iris does not guarantee absence of deadlocks

In this formulation, acquire yields a *unique permission* to release:

$$\text{Persistent}(\text{isLock} \vee R) \quad \begin{matrix} & R \\ \text{share} & \rightarrow * \text{ ex } (\text{newlock}()) \{v. \text{isLock} \vee R\} \\ & \text{create} \end{matrix}$$

$$\begin{matrix} & \text{isLock} \vee R \\ \rightarrow * \text{ ex } (\text{acquire } v) \{R * (R \rightarrow * \text{ ex } (\text{release } v) \{ \text{True} \})\} \\ & \text{acquire then release} \end{matrix}$$

This prevents releasing a lock that one does not hold.

The proof is left as an **exercise**.

In this formulation, the assertion $isLock \vee R$ is not needed.

$$R \\ \text{ex } (\text{newlock}()) \\ -* \quad \left\{ v. \square \left(\begin{array}{l} \text{ex } (\text{acquire } v) \\ \{ R * (R -* \text{ex } (\text{release } v) \{ \text{True} \}) \} \end{array} \right) \right\} \\ \text{create then forever (acquire then release)}$$

The entire Lock API is described by just one rule!

The proof is left as an **exercise**.

1 What is Iris (About)?

2 Basic Connectives

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

Many Synchronization Operations

We have described *locks* as primitive objects that allow synchronization.

But there are many more:

- semaphores,
- barriers,
- condition variables,
- channels (concurrent FIFO queues),
- concurrent data structures of all kinds.

We want to *construct* and *verify* them, not view them all as primitive.

A General Principle, or Recipe

To describe a runtime mechanism
that involves multiple participant threads and transfers of permissions,

- ① define custom *ghost state*
to represent each participant's view
- ② prove *ghost update* lemmas
describing how the participants' views can evolve
- ③ install an *invariant*
to relate the physical state and the ghost state

Points 1 and 2 will be covered by JMM. Now what is an invariant?

I am *not* talking about

- a data structure invariant
 - a user-defined assertion such as *isLinkedList* ℓ vs
- a loop invariant
 - the precondition of a recursive function

An Iris *invariant* is an assertion that *everyone agrees to maintain, forever*.

An invariant can be

- *created* (established) at a certain point in time
 - an invariant is part of the ghost state
- *opened* (temporarily violated), then *closed* (established) again
 - everyone can *depend* on the invariant
 - everyone must *preserve* the invariant
 - violations must be short-lived: at most *one atomic instruction*
- *shared* between participants
 - an invariant is never destroyed
 - its existence can be advertised to all participants

First Attempt (Unsound)

One can dynamically *create*, *share*, *open*, and *close* invariants.

$$\begin{array}{lll} P \Rightarrow \boxed{P} & \text{Persistent}(\boxed{P}) & \begin{array}{c} \boxed{P} \\ \dashv \Rightarrow (P * (P \dashv \Rightarrow \text{True})) \end{array} \\ \text{create} & \text{share} & \text{open / close} \end{array}$$

This is analogous to creating, sharing, acquiring, releasing a lock, but the whole thing is *ghost*—there is no runtime machinery.

These rules are *unsound*.

With these rules,
an invariant can be *opened twice* simultaneously,
by the same thread or by two distinct threads,
duplicating P .

This simplified presentation differs from Iris and is not machine-checked.

Introduce a (ghost) assertion W , for *world satisfaction*.

- W is a witness that all invariants in the world are satisfied (closed)
- W can also be viewed as *permission to open* and exploit invariants

Restrict the rule open / close :

$P \Rightarrow \boxed{P}$
creation

$\text{Persistent}(\boxed{P})$
share

$\rightarrow * \boxed{P} \Rightarrow (P * (P \rightarrow \Rightarrow \boxed{W}))$
open / close

Now, the question is,

- how can the token W be *obtained*?
- when and how must it be *surrendered*?

Now, the question is,

- how can the token W be *obtained*?
- when and how must it be *surrendered*?

We want W to appear/disappear before/after every *atomic expression*.

One can think of W as a token that is

- given by the scheduler to the active thread
- taken from the active thread by the scheduler

Parameterize the `execution` assertion with a *mask* $m \in \{0, 1\}$.

- $\text{ex}_0 \ e \ \{\psi\}$ means e is safe even if some invariants are violated
 - interleaving with other threads forbidden
 - e must be atomic
- $\text{ex}_1 \ e \ \{\psi\}$ means e is safe provided all invariants hold
 - the proof can exploit (open and close) invariants
 - interleaving with other threads permitted

All of the rules for ex_m are polymorphic in m *except sequencing*, which requires $m = 1$:

$$\begin{aligned} & \Gamma \vdash m = 1 \\ \rightarrow & \text{ex}_m \ e_1 \ \{v. \text{ex}_m \ [v/x]e_2 \ \{\psi\}\} \\ \rightarrow & \text{ex}_m \ (\text{let } x = e_1 \text{ in } e_2) \ \{\psi\} \end{aligned}$$

bind

In other words, ex_0 cannot reason about composite expressions; it is restricted to *atomic expressions*.

ex_0 and ex_1 are related as follows:

$$\begin{array}{ll} \text{---} \ast \begin{array}{c} ex_0 \ e \ \{\psi\} \\ ex_1 \ e \ \{\psi\} \end{array} & \begin{array}{c} (W \rightarrow ex_0 \ e \ \{W * \psi\}) \\ \ast \begin{array}{c} ex_1 \ e \ \{\psi\} \\ \text{weaken} \end{array} \end{array} \\ & \qquad \qquad \qquad \text{atomic} \end{array}$$

The second rule states that *during the execution of an atomic expression* the token W appears out of thin air.

By combining the previous rules, we obtain a simpler `open / close` rule, which does not mention W .

$$\begin{array}{l} \boxed{P} \\ -* (P -* \text{ex}_0 \ e \ \{P * \psi\}) \\ -* \text{ex}_1 \ e \ \{\psi\} \end{array}$$

`open / close`

By combining the previous rules, we obtain a simpler `open / close` rule, which does not mention W .

$$\begin{array}{l} \boxed{P} \\ -* (P -* \boxed{ex_0} e \{P * \psi\}) \\ -* \boxed{ex_1} e \{\psi\} \end{array}$$

`open / close`

Imagine e is a memory access (read, write, CAS, etc.). Then

- P can be exploited to obtain $\ell \mapsto v$ and *justify this access*
- the updated assertion $\ell \mapsto v'$ must be used to reconstruct P thereby *proving that the invariant is preserved*

Towards Sound Invariants

For example, specializing the rule for a write:

$\ell \mapsto v$	\boxed{P}
$\rightarrow \text{ex}_0 (\ell := v') \{ _. \ell \mapsto v' \}$	$\rightarrow (P \rightarrow \text{ex}_0 \ e \{P * \psi\})$
write	open / close

yields the following rule:

- * \boxed{P}
- * $(P -* \exists v. \ell \mapsto v * (\ell \mapsto v' -* P * \psi ()))$
- * **ex1** $(\ell := v') \{\psi\}$

Invariants are a form of *higher-order ghost state*:

- assertions about the (physical and ghost) heap
- stored inside the (ghost) heap

In combination with ghost state,
the rules that I have sketched are still *unsound*.

Two known paradoxes involve (roughly)

- storing at ghost address γ the proposition:
“the proposition stored at address γ is false”
- creating an invariant whose content is the proposition:
“it is impossible to initialize all invariants”

To avoid these paradoxes, the invariant opening rule must be weakened:

$P \Rightarrow \boxed{P}$	$Persistent(\boxed{P})$	$\rightarrow \boxed{P}$
create	share	$W \Rightarrow (\triangleright P * (\triangleright P \rightarrow \Rightarrow W))$ open / close

P implies $\triangleright P$. The converse is false.

This prevents circular arguments where an invariant is exploited as part of its own initialization.

One defines ex so that every time one step of computation is taken $\triangleright P$ can be transformed into P .

The rules that I have sketched can open *only one invariant at a time*.

- Opening an invariant consumes W .
- But, to open a second invariant, W is needed.

Iris has more complex rules, where a mask is not just one bit but a function of an infinite set of *names* to bits.

Then one can open two invariants simultaneously provided they have distinct names.

1 What is Iris (About)?

2 Basic Connectives

3 Mutable State

4 Locks (Primitive)

5 Invariants

6 Locks (User-Defined)

Locks as a User-Defined Data Structure

A spin lock can be implemented as follows:

```
type lock = bool Atomic.t          (* true if lock is held *)
let newlock() = Atomic.make false
let try_acquire lock = Atomic.compare_and_set lock false true
let rec acquire lock = if not (try_acquire lock) then acquire lock
let release lock = Atomic.set lock false
```

Locks as a User-Defined Data Structure

This data structure can be described by an invariant:

$$isLock \vee R \triangleq \exists \ell. \Gamma v = \ell \cap * \boxed{\ell \mapsto \text{true} \vee (\ell \mapsto \text{false} * R)}$$

Based on this definition of *isLock*,
one can *prove* that the code satisfies the API shown earlier:

$Persistent(isLock \vee R)$	$\xrightarrow{*}$	$ex \text{ (newlock()) } \{v. isLock \vee R\}$
		share create
$isLock \vee R$		$isLock \vee R * R$
$\xrightarrow{*} ex \text{ (acquire } v \text{) } \{R\}$		$\xrightarrow{*} ex \text{ (release } v \text{) } \{True\}$
		acquire release

See *the proof* in all of its glory.

That's all, folks!

Coming up next:

Everything you always wanted to know
about ghost state but were afraid to ask