An introduction to Iris

Jean-Marie Madiot & Francois Pottier

JFLA 2026



@ What is Iris (About)?
@ Basic Connectives

© Mutable State

@ Locks (Primitive)

@ Invariants

@ Locks (User-Defined)



A (Very Partial) History

To prove the safety and correctness of programs,



A (Very Partial) History

To prove the safety and correctness of programs,
® in the beginning there was Floyd-Hoare logic (1967-1969)
® propositions about the machine's state



A (Very Partial) History

To prove the safety and correctness of programs,
® in the beginning there was Floyd-Hoare logic (1967-1969)
® propositions about the machine's state
® then there was Separation Logic (1999-2002)

® assertions about fragments of the machine’s state

® separation and ownership

® [reasoning should be] confined to the cells that the program
actually accesses — O’Hearn, Reynolds, Yang (2001)



A (Very Partial) History

Then it became apparent that SL could be pushed much further.



A (Very Partial) History

Then it became apparent that SL could be pushed much further.

e Concurrent Separation Logic (2004-2007)

® shared /ocks mediating access to exclusive assertions
® guaranteed data race freedom



A (Very Partial) History

Then it became apparent that SL could be pushed much further.

e Concurrent Separation Logic (2004-2007)
® shared /ocks mediating access to exclusive assertions
® guaranteed data race freedom
® |ris (2015-2017)
® separation never truly exists; a fiction of separation suffices

® stability of assertions is key
® monolithic machine state, separable ghost state, and invariants



This Introduction to Iris

Iris is a large and complex system (paper; lecture notes; tutorial).
® As of today, 145 Iris-related papers listed
We wish to

® introduce just the key ideas

® give demonstrations of Iris at work
Two lectures:

e #1 (FP): basic concepts; locks; invariants
® #2 (JMM): user-defined separable ghost state


https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://github.com/logsem/iris-tutorial
https://iris-project.org/#publications

What is Logic About?

Logic involves propositions about an unchanging mathematical world.

A proposition has a truth value: it is either true or false, and forever so.

even(l) — false

)
even(2) — true
Vn:N.3p:N.n < pA prime(p) — true
)

Vx : N. even(x) — odd(x + 1) — true

The rules of logic ensure that only true propositions have proofs.



What Logic for a Changing World?

Can one make assertions about a changing world?

There is nobody in the street.



What Logic for a Changing World?

Can one make assertions about a changing world?

There is nobody in the street.
— may be true now



What Logic for a Changing World?

Can one make assertions about a changing world?

There is nobody in the street.
— may be true now
— could become false at any time
— somebody could turn the corner
— an unstable assertion about a changing world



What Logic for a Changing World?

Can one make stable, local assertions about a changing world?

My room is painted white.
— true now



What Logic for a Changing World?

Can one make stable, local assertions about a changing world?

My room is painted white.
— true now
— perhaps not true forever
— I might decide to paint it a different color



What Logic for a Changing World?

Can one make stable, local assertions about a changing world?

My room is painted white.
— true now
— perhaps not true forever
— I might decide to paint it a different color
— but no one else may do so (I own this room)



What Logic for a Changing World?

Can one make stable, local assertions about a changing world?

My room is painted white.
— true now
— perhaps not true forever
— I might decide to paint it a different color
— but no one else may do so (I own this room)
— a stable assertion
— expressing knowledge about the world,
— permission to change the world,
— and absence of permission for others to change it



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

| was born on a Monday.



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

| was born on a Monday.
— true



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

| was born on a Monday.
— true
— was not true 60 years ago



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

| was born on a Monday.
— true
— was not true 60 years ago
— nobody can change this fact



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

| was born on a Monday.
— true
— was not true 60 years ago
— nobody can change this fact
— a stable assertion about a changing world

An example of an assertion that becomes true at some point in time
and thereafter persists forever.



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

Over 129,864,880 books have been published.
— true
— was not true 60 years ago
— nobody can invalidate this fact
— a stable assertion about a changing world



More Examples of Stable Assertions

Can one make stable, local assertions about a changing world?

Over 129,864,880 books have been published.
— true
— was not true 60 years ago
— nobody can invalidate this fact
— a stable assertion about a changing world
— though anyone has permission to publish new books

Stable because this aspect of the world evolves in a monotonic way.



What is a Stable Assertion?

An assertion should

® express knowledge about (a fragment of) the world
e represent permission to change (this fragment of) the world

® represent interdiction for others to make incompatible changes

An assertion is stable if it contains enough interdiction
to justify the knowledge and permission that it offers.



What is Separation Logic?

Separation Logic (SL) is a logic where every assertion is stable.

e SL = Stability Logic?



What is Separation Logic?

Separation Logic enables local reasoning about a composite system.

® cach participant has partial knowledge of the world
and partial permission to change the world

® one participant’s knowledge is never invalidated
by another participant's actions

¢ the share (knowledge and permissions) of one participant
is compatible with the share of every other participant

® at all times, the conjunction of all shares is consistent



@ What is Iris (About)?

® Basic Connectives
Conjunction
Implication
Persistence
Update
Execution

© Mutable State
O Locks (Primitive)
@ Invariants

@ Locks (User-Defined)

14



Basic Assertions

The world is partly physical, partly ghost.

Typical examples of basic assertions:

® a physical memory cell, x — v

® the points-to assertion (Reynolds, 2002)
® an immutable physical memory cell, x —g v

® the persistent points-to assertion (Friis Vindum and Birkedal, 2021)
® a ghost memory cell, iiaﬁ}v

® new in lris 1 (Junééi al., 2015)


https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://www.cs.au.dk/~birke/papers/2021-ms-queue.pdf
https://iris-project.org/pdfs/2015-popl-iris1-final.pdf

Basic Connectives

| want to describe five fundamental connectives:

® conjunction, A x B
® decomposes a view of the world into several parts

implication, A - B

® change one's view of the world — not the world itself
® persistence, (1A

® means "“forever A"
update, & B

® changes the ghost world

® the binary form A = B is sugar for J(A =« B B)

execution, ex s {B}

® changes the ghost and physical world
® the Hoare triple {A} s {B} is sugar for (A - ex s {B})



And a Lot More

I will not discuss today:

® pure assertions " P where P is a proposition
® quantifiers Vx.A, Ix.A

® the /ater modality A

e user-defined assertions, which can

® inductive: linked list (segment), tree, iterated conjunction
® co-inductive
® guarded recursive: ex

| will discuss later today:

® Jocks, first considered primitive, then user-defined

® jnvariants



Overview

@ Basic Connectives
Conjunction



Conjunction

Conjunction A x B means

® A holds and B holds

® and one can act on one side without disturbing the other—stability.

This is visible in the way — and = and ex interact with x.

It is sometimes called “separating” conjunction
® because x — v * y — v/ implies "x # y

but the key point is stability.



Conjunction

Conjunction is associative and commutative. True is its unit.

It is not idempotent:

® Some assertions are not duplicable: in general, AL/ A x A
e Every persistent assertion is duplicable: JAFOAxOA

The logic is affine, as opposed to linear: At True.



Overview

@ Basic Connectives

Implication



Implication (Magic Wand)

Implication A - B means:

® by consuming A
® and by consuming A — B as well

® you can get B.

Think of two puzzle pieces that fit together.

Implication changes your view of the world, not the world itself.
® x>0 = dy.x—yx"0<y!

® x> yxyr—z — listseg(x,z)
¢ x =y —x (y— z— listseg(x, z))



Basic Laws of Implication

Here is one formulation (Ishtiag and O'Hearn, 2001):

RxAFB R-A—xB R'-A AR A B+ B
R-A—=B R+ R+ B AxBFA x B



http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/bi-assertion-lan.pdf

Basic Laws of Implication

Here is one formulation (Ishtiag and O'Hearn, 2001):

RxAFB R-A—xB R'-A AR A B+ B
R-A—=B R+ R+ B AxBFA x B

This should be easier to read:

R—+«A «B (A = B)
= (R+A) =B (A«B)xA -« B —+ (Ax R+ BxR)
currying/uncurrying application stability (frame)

(RxA—=B)xR
-+ A—=xB
partial application


http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/bi-assertion-lan.pdf

Non-Separating Conjunction

A A B is an external choice:

® you can have A and you can have B

® but you can have only one of them.

A A B is equivalent to
3S. S*(S—=*A)x(S—=B)

Here is a proof.


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/basics.v

Overview

@ Basic Connectives

Persistence



Persistence

0 A means that A is forever true.

An assertion is persistent if it can be written in the form [JA.
® by definition, Persistent(P) means P+ P

Intuitively, a proof of (JA is a proof of A that uses persistent facts only.

OAF B OA
OAFOB - A
introduction elimination



@ Basic Connectives
Conjunction
Implication
Persistence
Update
Execution

27



Update

A binary update A = B means:

® by consuming A
® and by changing the world

® you can get B.

It is sugar for O(A - B B).
A unary update £ B means

® permission to change the world to get B.

Caveat: there are several notions of update; | am blurring the distinction.



Examples of Updates

An update is used to allocate a new ghost cell:
° True = . [é}’y

and to update a ghost cell (simplified rule—see JMM'’s lecture):
(a7 = b7

An update is used to open and close an invariant (later today).



Basic Laws of Binary Update

Binary update behaves very much like implication:

R=A=B (A= B)
= (R+xA)=B (A= B)xA = B -+« (AxR= BxR)
currying/uncurrying application stability (frame)

(RxA= B)x R
-« A= B
partial application



Basic Laws of Unary Update

It is easier to remember just the laws of unary update:

A BBEA

return (reflexivity) join (transitivity)
A= B Ax (BB)
=+ (BA) = (BB) ~+ B(AxB)
covariance (map) stability (strength)

One sums up these laws by saying: unary update is a strong monad.



An Interesting Non-Law

Update does not commute with universal quantification:

Vx.2BA I PBPVx.A

An intuitive explanation is: a ghost cell can be updated in any way
you wish but not in all ways at once:

lfaf]w entails Vb. 51 b)’

| —

"a!’ does not entail B Vb. bl
| I g

This is the same reason why the value restriction exists in ML.

This also explains the lack of an intersection rule in lIris:

Vx. ex e {A} I/ ex e{Vx.A}



@ Basic Connectives
Conjunction
Implication
Persistence
Update
Execution

33



A Programming Language

So far everything has been about logic, not about programming.
Now assume that a programming language (syntax, semantics) is given.
For example, it might be

® 3 WHILE language, whose statements return no result;

® a \-calculus, whose expressions return a value.



Execution

The assertion ex s {B} means

there is permission to execute the statement s once

this is safe (execution won't crash)

this may change the (physical and ghost) world

and if/once execution terminates, B will hold.



Execution

In the Iris literature, ex is named wp for “weakest precondition”.
In dynamic logic (Pratt, 1974) it is written [s]B.
| like ex s {B} because it can seem to mean

® “out of s one gets B”

® “executing s establishes B"


https://en.wikipedia.org/wiki/Dynamic_logic_(modal_logic)

The Triple

The Hoare triple, or Separation Logic triple,

{A} s {B}

is sugar for
O(A -« ex s {B})



Basic Laws of Execution

An update is a special case of an execution assertion.

BB ex s1{ ex s, {B}}
= ex skip {B} = ex (s1;5){B}
skip (return) sequencing (join)
A—xB Ax ex s {B}
—~« ex s {A} =« ex s {B} -« ex s {Ax B}

weakening (map) stability | frame (strength)



Execution Absorbs Updates

Execution absorbs updates:

E ex s {B} ex s {&B}
—+ ex s {B} —+ ex s {B}
update before execution update after execution

These laws because the definition of ex involves = .



Parallelism and Concurrency

Structured parallel composition and thread creation are easy to describe:

ex s1 {B1} x ex s {B2} ex s {B}
- ex (s1]| s2) {B1 * B2} - ex (forks) {True}
fork / join fork

The second rule offers no way of waiting for the child thread to finish
so as to obtain B. It is up to the user to implement such a mechanism
using channels, references, etc.



Expression-Oriented Rules

If the programming language has expressions (which return values)
then one uses ex e {1} where ¢ : Val — iProp.

ex e {y.B} means

® there is permission to execute the expression e once

e and (if it terminates then) it returns a value y such that B holds.



Expression-Oriented Rules

The skip and sequencing rules become

= v ex e {v. ex [v/x]ex {¢}}
= ex v {y} = ex (letx=ejine) {¥}
return bind

These rules are used to reason step by step about a program.

They allow symbolic execution inside the proof assistant.



@ What is Iris (About)?
@ Basic Connectives
© Mutable State

@ Locks (Primitive)

@ Invariants

@ Locks (User-Defined)

a3



Points-To Assertions

The assertion x — v describes a reference (a mutable memory block).
This assertion means:
e the reference at address x currently contains the value v
® permission to read and write this reference
e interdiction for anyone else to read or write this reference
This assertion is exclusive: x — v % x — v = False.
More generally, there is separation: x — v x y — v/ FTx £y

This assertion is not duplicable: x — v I/ x — v x x — v.



Operations on References

References can be allocated, read, and written.

ex (refv) {Vv.30."V =0 x4+ v}

create
l— v l—v
=« ex () {V."V =v1xl v} -« ex (L:=v){ L=V}
read write

In a language without GC, there would be a deallocation operation.



Operations on References, Texan Style

This postcondition-passing style makes the rules easier to apply:

True % (V0. £ — v = 1) () L= v (l—v-xv)
 ex (refv) {1} o ex (1) {0}

create read

v (U= v —=1())
=« ex (L:=V){v}

write

Instead of saying: the postcondition of write is £+ v/,
say: it is anything you want, provided it is implied by ¢ — v'.



Making a Reference Immutable

A mutable reference can be forever turned into an immutable one.

v 14 =0 Vv
= f=pv =+ ex () {v."v =v7}
freeze read frozen

The two views cannot co-exist: £+ v x £+ v/ implies False.



Data-Race Freedom

A write access to a reference requires a mutable points-to assertion.
A read access requires a (mutable or immutable) points-to assertion.
Therefore a write and a read can never be simultaneously enabled!

® Data-race freedom is guaranteed. (Good!)

e Communication between threads is impossible. (Bad!)

These points hold even if read-modify-write operations (FAA, CAS, etc.)
are allowed, as they also require an exclusive points-to assertion.

To allow threads to interact, one must introduce

® synchronisation primitives: for example, locks; or

® shared invariants.



@ What is Iris (About)?
@ Basic Connectives
© Mutable State

@ Locks (Primitive)

@ Invariants

@ Locks (User-Defined)

a9



Lock API (OCaml)

In OCaml, an abstract type of locks could look like this:

type lock

(*» a lock can be shared between several threads x)

val newlock : unit -> lock

val acquire : lock -> unit (* acquire access permission x)
val release : lock -> unit (* release access permission x)

The type-checker does not know what data structure a lock protects,
so cannot check that acquire and release are correctly used.



Lock Usage (OCaml)

A stack, protected by a lock, could look like this:

type ’'a stack =
{ data: ’'a list ref; lock: lock } (* lock protects data x*)

let make () =
let data = ref [] in
let lock = newlock() in
{ data; lock }

let push x stack =

acquire stack.lock; (* acquire permission )
stack.data := x :: Istack.data; (* access the data *)
release stack.lock (* release permission x*)

To verify the safety of this code, reasoning rules for locks are needed.



Lock API

There exists isLock : Val — iProp — iProp such that:

R
Persistent(isLock v R) — ex (newlock()) {v.isLock v R}
share create
isLock v R isLockv R x« R
- ex (acquirev) {R} — ex (releasev) { True}
acquire release

From the user's point of view, acquire produces R; release consumes R.



Lock Usage (OCaml)

A stack, protected by a lock, could look like this:

type ’'a stack =
{ data: ’'a list ref; lock: lock } (* lock protects data x*)

let make () =
let data = ref [] in
let lock = newlock() in
{ data; lock }

let push x stack =

acquire stack.lock; (* acquire permission )
stack.data := x :: stack.data; (*x access the data *)
release stack.lock (* release permission x*)

See a proof of safety of this code.


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/lock_client.v

Data Race Freedom

The permission to access the data appears only within critical sections
® between release and acquire
so data-race freedom is still guaranteed

® even though interactions between threads are now possible



Improvements of the Lock API

One could improve this Lock API in several ways:

® separating the creation of the lock
and the initialization of the assertion R

® use fractions to keep track of sharing
and allow canceling a lock whose fraction is 1

® introduce an assertion isLocked v
to prevent releasing a lock that one does not hold
— under our API, such a mistake is possible if R x R I/ False

e view isLocked v as an obligation to eventually release the lock
— current lris does not allow this, as it is affine
— current Iris does not guarantee absence of deadlocks



Alternate Formulation 1

In this formulation, acquire yields a unique permission to release:

R
Persistent(isLock v R) — ex (newlock()) {v.isLock v R}
share create

isLock v R
— ex (acquirev) {R * (R — ex (releasev) {True})}
acquire then release

This prevents releasing a lock that one does not hold.

The proof is left as an exercise.


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/spinlock_reformulation_blank.v

Alternate Formulation 2

In this formulation, the assertion isLock v R is not needed.

R
ex (newlock())

{v. O < eﬂéaf‘z%riv)ex (release v) {True})}) }

create then forever (acquire then release)

The entire Lock APl is described by just one rule!

The proof is left as an exercise.


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/spinlock_reformulation_blank.v

@ What is Iris (About)?
@ Basic Connectives
© Mutable State

@ Locks (Primitive)

@ |nvariants

@ Locks (User-Defined)

58



Many Synchronization Operations

We have described locks as primitive objects that allow synchronization.

But there are many more:

® semaphores,

® barriers,

® condition variables,

® channels (concurrent FIFO queues),

® concurrent data structures of all kinds.

We want to construct and verify them, not view them all as primitive.



A General Principle, or Recipe

To describe a runtime mechanism
that involves multiple participant threads and transfers of permissions,

@ define custom ghost state
to represent each participant’s view

@® prove ghost update lemmas
describing how the participants’ views can evolve

® install an invariant
to relate the physical state and the ghost state

Points 1 and 2 will be covered by JMM. Now what is an invariant?



What is an Invariant?

| am not talking about

® 3 data structure invariant
— a user-defined assertion such as isLinkedList ¢ vs

® a3 loop invariant
— the precondition of a recursive function



What is an Invariant?

An lIris invariant is an assertion that everyone agrees to maintain, forever.
An invariant can be

o created (established) at a certain point in time
® an invariant is part of the ghost state
® opened (temporarily violated), then closed (established) again
® everyone can depend on the invariant
® everyone must preserve the invariant
® violations must be short-lived: at most one atomic instruction
® shared between participants

® an invariant is never destroyed
® its existence can be advertised to all participants



First Attempt (Unsound)

One can dynamically create, share, open, and close invariants.

P= Persistent(m) —+ B (P * (P -~ B True))

create share open / close

This is analogous to creating, sharing, acquiring, releasing a lock,
but the whole thing is ghost—there is no runtime machinery.

These rules are unsound.



Why Unsound?

With these rules,

an invariant can be opened twice simultaneously,
by the same thread or by two distinct threads,
duplicating P.



Towards Sound Invariants

This simplified presentation differs from Iris and is not machine-checked.

Introduce a (ghost) assertion W, for world satisfaction.

® W is a witness that all invariants in the world are satisfied (closed)

® W can also be viewed as permission to open and exploit invariants



Towards Sound Invariants

Restrict the rule open / close :

Rl

P= Persistent(| P ) =+ W= (Px (P W)

creation share open / close



Towards Sound Invariants

Now, the question is,

® how can the token W be obtained?

® when and how must it be surrendered?



Towards Sound Invariants

Now, the question is,

® how can the token W be obtained?

® when and how must it be surrendered?

We want W to appear/disappear before/after every atomic expression.

One can think of W as a token that is

e given by the scheduler to the active thread

e taken from the active thread by the scheduler



Towards Sound Invariants

Parameterize the execution assertion with a mask m € {0,1}.

® exg e {1} means e is safe even if some invariants are violated

® interleaving with other threads forbidden
® ¢ must be atomic

ex] e means e is safe provided all invariants ho
° {v} fe provided all ts hold

® the proof can exploit (open and close) invariants
® interleaving with other threads permitted



Towards Sound Invariants

All of the rules for ex,, are polymorphic in m except sequencing,
which requires m = 1:

l_m — 1—|
— exXm e {v. ex;m [v/x]ex {¢}}
— exm (letx =erine) {¢}
bind

In other words, "exg cannot reason about composite expressions;
it is restricted to atomic expressions.



Towards Sound Invariants

ex , and ex , are related as follows:

exo e {v} (W — exo e {W x1})
-« exy e {yY} -+ exy e {y}
weaken atomic

The second rule states that during the execution of an atomic expression
the token W appears out of thin air.



Towards Sound Invariants

By combining the previous rules, we obtain a simpler open / close rule,
which does not mention W.

— (P — exg e {Px1})
- exy e {y}

open / close



Towards Sound Invariants

By combining the previous rules, we obtain a simpler open / close rule,
which does not mention W.

— (P — exg e {Px1})
- exy e {y}

open / close

Imagine e is a memory access (read, write, CAS, etc.). Then

® P can be exploited to obtain ¢ — v and justify this access

e the updated assertion ¢ — v/ must be used to reconstruct P
thereby proving that the invariant is preserved



Towards Sound Invariants

For example, specializing the rule for a write:

(v = (P exo e {P=xv})
=« exg (L:=V){ A=V} -« ex; e {9y}
write open / close

yields the following rule:

P]

=+ (P—>3v.l—vx(l—Vv = Px1())
- ex1; (L:=V){y}

open / close across a write



Still Unsound

Invariants are a form of higher-order ghost state:

e assertions about the (physical and ghost) heap
e stored inside the (ghost) heap

In combination with ghost state,
the rules that | have sketched are still unsound.

Two known paradoxes involve (roughly)

® storing at ghost address « the proposition:
“the proposition stored at address « is false”

® creating an invariant whose content is the proposition:
“it is impossible to initialize all invariants”



Last Attempt (Sound)

To avoid these paradoxes, the invariant opening rule must be weakened:

P= Persistent(m) -+« W= (P (P B W))

create share open / close

P implies >P. The converse is false.

This prevents circular arguments where an invariant is exploited
as part of its own initialization.

One defines ex so that every time one step of computation is taken
>P can be transformed into P.



Limitations

The rules that | have sketched can open only one invariant at a time.

® Opening an invariant consumes W.
® But, to open a second invariant, W is needed.
Iris has more complex rules, where a mask is not just one bit

but a function of an infinite set of names to bits.

Then one can open two invariants simultaneously
provided they have distinct names.



@ What is Iris (About)?
@ Basic Connectives
© Mutable State

@ Locks (Primitive)

@ Invariants

@ Locks (User-Defined)

76



Locks as a User-Defined Data Structure

A spin lock can be implemented as follows:

type lock = bool Atomic.t (* true if lock is held x)

let
let
let
let

newlock() = Atomic.make false

try_acquire lock = Atomic.compare_and_set lock false true

rec acquire lock = if not (try_acquire lock) then acquire lock
release lock = Atomic.set lock false



Locks as a User-Defined Data Structure

This data structure can be described by an invariant:

isLockvR = Elé.rv:éj*‘frﬁtrue\/(foa/se*R)‘




Lock API

Based on this definition of isLock,
one can prove that the code satisfies the API shown earlier:

R
Persistent(isLock v R) — ex (newlock()) {v.isLock v R}
share create
isLock v R isLockv R x R
- ex (acquirev) {R} — ex (releasev) { True}
acquire release

See the proof in all of its glory.


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/spinlock.v

That's all, folks!

Coming up next:

Everything you always wanted to know
about ghost state but were afraid to ask



	What is Iris (About)?
	Basic Connectives
	Conjunction
	Implication
	Persistence
	Update
	Execution

	Mutable State
	Locks (Primitive)
	Invariants
	Locks (User-Defined)

