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References on exercises

▶ more info on the proof mode here you should get this here:
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md

or searching online “iris proof mode”
▶ more guided examples/exercises in the POPL 2020 Iris tutorial
▶ on popular demand I could do the exercises

https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md
https://gitlab.mpi-sws.org/iris/tutorial-popl20
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An example
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Combining progress about a shared resource
A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.

let r = ref 0 in

let l = newlock () in

(fork)

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

(join)

acquire l;

assert (!r = 2)

Let us prove safety with the lock rules. Reminder of the lock Hoare triples:

{R} newlock () {ℓ.□isLock ℓR}
isLock ℓR ⊢ {True} acquire ℓ {R}
isLock ℓR ⊢ {R} release ℓ {True}
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How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0}

so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant
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What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)
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One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let r1 = ref 0 in

let r2 = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1 || r := !r + 1

r1 := !r1 + 1 || r2 := !r2 + 1

release l || release l

acquire l;

assert (!r = 2);

release l

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.

Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

isLock l (∃n∃n1∃n2 r 7→ n ∗ r1
1/27→ n1 ∗ r2

1/27→ n2 ∗ n = n1 + n2)

but: 1) not modular, 2) changes the code 3) a special case of ghost
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Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0}

, find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .
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Constraint #1: analysis

R = ∃n r 7→ n ∗ P(n)

Trying to prove the first constraint, derivation-style:

...
True ⇛ P(0) ∗ A ∗ A′

r 7→ 0 ⇛ r 7→ 0 ∗ P(0) ∗ A ∗ A′ frame

r 7→ 0 ⇛ ∃n r 7→ n ∗ P(n) ∗ A ∗ A′ exists-intro



10

Constraint #2 and #3

R = ∃n r 7→ n ∗ P(n)

...
P(n) ∗ A ⇛ P(n + 1) ∗ B

r 7→ n + 1 ∗ P(n) ∗ A ⇛ r 7→ n + 1 ∗ P(n + 1) ∗ B
frame

r 7→ n + 1 ∗ P(n) ∗ A ⇛ ∃n′ r 7→ n′ ∗ P(n′) ∗ B
exists-right

{r 7→ n ∗ P(n) ∗ A } r := !r + 1 {∃n′ r 7→ n′ ∗ P(n′) ∗ B }
incr+seq

{R ∗ A } r := !r + 1 {R ∗ B }
exists-left

{ A } acquire r; r := !r + 1; release r { B }
acquire+seq+release
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Constraint #4

Now to conclude the program:

...
P(n) ∗ B ∗ B ′ ⇛ n = 2

r 7→ n ∗ P(n) ∗ B ∗ B ′ ⇛ r 7→ n ∗ n = 2
frame

r 7→ n ∗ P(n) ∗ B ∗ B ′ ⇛ r 7→ 2
conseq

R ∗ B ∗ B ′ ⇛ r 7→ 2
exists-intro
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Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′

ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B

ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2

???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′
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Step back

What is ghost state?
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Demonic (∀) and angelic (∃) non-determinism
Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:

(e, σ, g)

(e′, σ′, g)

(e′, σ′, g ′)

(e′′′, σ′′′, g ′) ...

∀

∃

(e′, σ′, g ′′)

∀

∀

(e′′, σ′′, g)

(e′′, σ′′, g ′′′)

∀

∃

(e′′, σ′′, g ′′′′)

∀

Visible in the definition of wp, e.g. when e is not a value wp e ϕ ≜

...∀σ S(σ) −∗ |⇛...∀e ′∀σ′ (e, σ) → (e ′, σ′) −∗ |⇛ S(σ′) ∗ wp e ′ ϕ

where |⇛ contains an existential: J|⇛PK(a) ≜ ...∃b...JPK(b)
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Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it
▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?
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Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update
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Designing the appropriate monoid
Smaller subproblems: split P as P(n) = ∃xy Q(x) ∗ Q ′(y) ∗ n = x + y

(Before splitting)

True ⇛ P(0) ∗ A ∗ A′

P(n) ∗ A ⇛ P(n + 1) ∗ B

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

P(n) ∗ B ∗ B ′ ⇒ n = 2

(Subproblem +more steps)

True ⇛ Q(0) ∗ A

Q(0) ∗ A ⇛ Q(1) ∗ B

Q(x) ∗ A ⇒ x = 0

Q(x) ∗ B ⇒ x = 1

(same for A′ , B ′ , Q ′() )

Equivalent goal: find Q(0), Q(1), A, B such that:

▶ Q(1) ∗ A ⇒ False

▶ Q(0) ∗ B ⇒ False
▶ Q(0) · A is “the whole thing”, so that: Q(0) · A⇝ Q(1) · B
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Commutative-monoid-with-validity (Mhalf , ·)

Mhalf ::= full(0) | full(1) | half (0) | half (1) | ×

Operations and validity:

− · − full(x) half (0) half (1) ×
full(y) × × × ×
half (0) × full(0) × ×
half (1) × × full(1) ×

× × × × ×

valid(−) True True True False

Properties of interest (no full(−), no ×):

valid(half (x) · half (y)) ⇒ x = y

half (0) · half (0) ⇝ half (1) · half (1)
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Demo: half_ra.v

Exercise: start_finish.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/half_ra.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/start_finish.v
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Quiz

Properties we have:

half (x) · half (y) ⇒ x = y

half (0) ∗ half (0) ⇛ half (1) ∗ half (1)

Properties we want:

Q(0) ∗ A ⇛ Q(1) ∗ B

Q ′(0) ∗ A′ ⇛ Q ′(1) ∗ B ′

Q(x) ∗ B ∗ Q ′(y) ∗ B ′ ⇒ x = 1 ∧ y = 1

Can we choose: Q(x) = half (x) , A = half (0) , B = half (1) ?
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Products

Let us call commutative-monoid-with-validity resource algebra0 (RA)

The product of two RA (A, ·A, validA) and (B, ·B , validB) is defined as
(A× B, ·A×B , validA×B) where

(a, b) ·A×B (a′, b′) ≜ (a ·A a′, b ·B b′)

validA×B((a, b)) ≜ validA(a) ∧ validB(b)

Property: frame-preserving update is pointwise:

a⇝ a′ b ⇝ b′

(a, b)⇝ (a′, b′)
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Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
− · − None Some(a)

None None Some(a)
Some(b) Some(b) Some(a · b)

valid(−) True valid(a)

Properties of frame-preserving update:

a⇝ b

Some(a)⇝ Some(b) Some(a)⇝ None

In the following we write ϵ for the unit None and a for Some(a)
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The algebra needed for the example

Let’s use the RA : option Mhalf × option Mhalf

A = half (0), ϵ A′ = ϵ, half (0)
B = half (1), ϵ B ′ = ϵ, half (1)

Q(x) = half (x), ϵ Q ′(x) = ϵ, half (x)
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{ full(0), full(0) }

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)
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Zoom on one thread
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{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }
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Demo: incr2.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/incr2.v
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Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

▶ handle more threads e.g. (ϵ, ϵ, half (0), ϵ)
▶ continue the rest of the program keeping (full(0), full(0), unrelated)
▶ reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...

Answer: package all of that into one monoid
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▶ continue the rest of the program keeping (full(0), full(0), unrelated)
▶ reuse a proof, allow custom resource algebras, etc
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RA of functions

If M is an RA, then X → M is an RA for any X :

(f · g)(x) ≜ λx .f (x) · g(x) valid(f ) ≜ ∀x .valid(f (x))
f (x)⇝ a

f ⇝ f [x := a]

and so is the set of partial functions X ⇀ M. In case M has no unit, allows to talk about
the singleton partial function:

g
γ
≜ [γ := g ]
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Frame preservation and allocation
Problem: creating the new ghost resource g

γ
is impossible!

Because [γ := g ] could be a potential frame of itself:

valid(∅ · [γ := g ])
¬valid([γ := g ] · [γ := g ])

∴ ∅ ⇝̸ [γ := g ]

In fact a⇝ b is redefined as a⇝ {b}. More general definition: a⇝ B where B ⊆ M:

a⇝ B ≜ ∀c? ∈ M? valid(a · c?) ⇒ ∃b ∈ B valid(b · c?)

M? ≜ ⊥ ⊎M a · ⊥ ≜ a

We can now allocate if we have infinite possibilities and the rest of the world c? is finite:

valid(g)

∅⇝ {[γ := g ] | γ ∈ N}
valid(g)

True ⇛ ∃γ g
γ

true for N fin
⇀ M but not for N ⇀ M.
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Several types of RA

The dependent product of finite partial functions to each Mi is an RA:

∏
i∈I

N fin
⇀ Mi g : Mi

γ
≜ λj .

{
[γ := g ] if i = j
∅ otherwise

The Σ of “iProp Σ” does the bookkeeping of saying which i correspond to which Mi .

The command

Context ‘{inG Σ M}

ensures that M is somewhere in the set and

Context ‘{mylibG Σ}

ensures that all of the “M” of mylib are there too.
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Persistent knowledge
How to state that a reference will not change once set?
let check r =

let x = Atomic.get r in

let y = Atomic.get r in

assert (x = 0 || x = y)

let try_set r v =

Atomic.compare_and_set r 0 v

let r = Atomic.make 0

try_set 3 || try_set 5 || try_set 7 || check ()

Specs for get: once the returned value is not 0 then it will never change.

{True} get () {n.n = 0 ∨ n ̸= 0 ∧□ shot(n)
γ}

{ shot(n)
γ} get () {v .v = n}

we also need some resource “pending ” for before shooting.
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Resource Algebras
A resource algebra is a resource algebra0 plus a core (Pottier, 2013):

| · | : M → M?

Intuition/axioms/properties:

▶ |a| is a ‘duplicable’ part of a if it exists
▶ if a has no ‘duplicable’ part, then |a| = ⊥

▶ if |a| ≠ ⊥ then a = a · |a| = a · |a| · |a| = ...

▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|
▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
▶ no core for Mhalf : |half (x)| = |full(x)| = |×| = ⊥

The persistent modality □ is defined using | − |:

J□PKρ(a) ≜ JPKρ(|a|)

Intuition: □P is like P ∗ P ∗ P ∗ . . . (like !P in linear logic)
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▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|

▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
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▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|
▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
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One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m
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Moneshot is derivable from existing RAs
Moneshot has three ingredients:

▶ it has two disjoint components
▶ shot(−) has the agreement property

▶ pending is exclusive i.e. ∀c ¬valid(pending · c) — why is it useful?

anything exclusive ⇝ anything valid

And indeed we can derive it from the corresponding RAs:

Moneshot ≜ Ex(1) + Ag(Z)

where:

▶ Ex(X ) is the exclusive RA over a set X
▶ Ag(X ) is the agreement RA over a set X
▶ M1 + M2 is the sum of two RAs M1 and M2
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About □

Demo: one_shot.v

Some remarks:

▶ you can recover the reference from the invariant — see one_shot_cancel.v

▶ for ghost ownership the □ modality is not strictly necessary since we can duplicate it by
hand, but it is convenient to have shot(n) in the persistent context

▶ □ is very convenient for consise definitions, such as

P ⇛ Q ≜ □(P −∗ |⇛Q)

{P} e {Q} ≜ □(P −∗ wp e Q)

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot_cancel.v


36

Authoritative RA
The authoritative RA over an RA M is, wheree a, b ∈ M,

Auth(M) ::= •a | ◦b | •◦(a, b) | ×

Intuition:

▶ •a is the unique global authority, or authoritative view
you need •a to update

▶ ◦b is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions

Main properties:

valid(a · c)
•a · ◦b ⇝ •(a · c) · ◦(b · c)

valid(•a · ◦b) ⇒ b ≼ a
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Authoritative RA

Operations:

· •a ◦b •◦(a, b) ×

•a′ × •◦(a′, b) × ×

◦b′ •◦(a, b′) ◦(b · b′) •◦(a, b · b′) ×

•◦(a′, b′) × •◦(a′, b · b′) × ×

× × × × ×

valid(−) valid(a) valid(b) valid(a) ∧ b ≼ a False

| − | ⊥ ◦b ◦b ⊥

we could almost derive it by Auth(M) = Excl(M)? ×M but we need valid(•◦(a, b)) to
also require b ≼ a ≜ ∃c a = b · c .
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Example usage of Auth(M)

Using Auth((N,+)) we can prove that 4 threads doing:

eincr ≜ acquire l; incr r; release l

will increment r at least four times. Under the lock invariant R = ∃n r 7→ n ∗ •n γ
:

isLock l R ⊢ { ◦0 γ} eincr { ◦1 γ}
isLock l R ⊢ { ◦0 γ} (eincr || eincr || eincr || eincr ) { ◦4 γ}

R ⊢ { ◦4 γ} !r {n.n ≥ 4}

Indeed with •n γ ∗ ◦4 γ
we can only prove 4 ≼(N,+) n which means 4 ≤ n

Intuitively ◦4 does not prevent “other” ◦1’s from contributing to •n
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Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)
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{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)
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Checking counter monotonicity using Auth(Nmax)

Demo: monotonic_counter.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/monotonic_counter.v
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Fractional RA

Definition:

Frac ≜ (0, 1]∩Q | × valid(q) ≜ q ̸= × |q| ≜ ⊥ q ·q′ ≜
{

q + q′ if q + q′ ≤ 1
× otherwise

Easier definition:

Frac ≜ Q+∗ valid(q) ≜ q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

You still have to be a bit careful, here is a wrong definition:

Frac ≜ Q valid(q) ≜ 0 < q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

For once, updates do not matter, still, you can wonder when q ⇝ q′ holds
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Authoritative fractional RA

Derived construction: FracAuth(M) ≜ Auth((Frac ×M)?) with notations:

•a ≜ •(1, a) ◦q b ≜ ◦(q, b)

Properties:

◦q+q′(b · b′) ≡ ◦qb · ◦q′b′
valid(a · c)

•a · ◦qb ⇝ •(a · c) · ◦q(b · c)
valid(•a · ◦qb) ⇒ b ≼ a

valid(•a · ◦1b) ⇒ b = a
valid(a′)

•a · ◦1b ⇝ •a′ · ◦1a
′
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Example usage of FracAuth(M)

Using FracAuth((N,+)) we can finally prove modularly that k threads doing:

eincr ≜ acquire l; incr r; release l

will increment r at exactly k times. Under the lock invariant R = ∃n r 7→ n ∗ •n γ
:

True ⇛ ∃γ •0 γ ∗ ◦1/40
γ ∗ ◦1/40

γ ∗ ◦1/40
γ ∗ ◦1/40

γ

isLock l R ⊢ { ◦1/40
γ} eincr { ◦1/41

γ}
isLock l R ⊢ { ◦10

γ} (eincr || eincr || eincr || eincr ) { ◦14
γ}

R ⊢ { ◦14
γ} !r {n.n = 4}
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Other common uses of Auth

: heaps

When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val))

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]
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Other common uses of Auth

: invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp)))

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp))) P

ι
≜ ◦[ι := agree(P)]

γinv

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above.

.. But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp))) P

ι
≜ ◦[ι := agree(P)]

γinv

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants
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Manipulating invariants — from Iris from the ground up
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Manipulating invariants — from Iris from the ground up
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Brace yourself

Full definition of world satisfaction, invariants, view shifts, wp
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Excerpt from Iris from the ground up
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Excerpt from Iris from the ground up
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Variants/instances of Iris
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Relaxed memory

▶ Invariants such as lock 7→ 0 ∨ lock 7→ 1 ∗ ∃n r 7→ n
ι
only make sense if there is an

instantaneous view of the memory, which is not true in relaxed memory
▶ for now, axiomatic memory models do not fit Iris, but view-based operational memory

models (for e.g. for release-acquire synchronisation) can be made to fit
▶ single-location invariants ℓ | I which can provide knowledge + special mechanisms

(escrows) to transmit non-persistent resources
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Linearizability

Under sequential consistency linearizability can be reasoned about using logically atomic
triples:

⟨P⟩ e ⟨Q⟩

means: “at the linearization point in the execution of e, the resources in P are atomically
consumed to produce the resources in Q”
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Liveness?

▶ Transfinite Iris: ordinal step indices for the existential property and termination

Standard Iris Transfinite Iris

if ⊨ ∃x P then for some x ⊨ P × ✓
▷(∃x P) ⇔ ∃x ▷P ✓ ×

▷(P ∗ Q) ⇔ ▷P ∗ ▷Q ✓ ×

▶ Nola: “no later” at invariant opening, replaced with restricted formulas

Iris
{P ∗ ▷R} e {Q ∗ ▷R}
{P ∗ R

ι} e {Q}

Nola
[P ∗ JF K] e [Q ∗ JF K] F ∈ Fml

[P ∗ F ] e [Q]
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Variants of Iris

▶ complexity analysis: resources can be time/space credits/receipts,
▶ type soundness, e.g. rustbelt
▶ relational separation logics
▶ session types, channels, distributed systems, cryptographic reasoning
▶ probabilities, non-determinism
▶ relaxed memory
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Exercise

(1) design a resource algebra such that:

valid(Start) Start ⇝ Finish Persistent( Finish
γ
)

(2) design a resource algebra such that:

valid(r(0)) ∀n ∈ N r(n) ≡ t(n) · r(n + 1) ¬valid(t(n) · t(n))

motivation: allocate once |⇛∃γ r(0)
γ

to generate an infinitely many tokens t(i)
γ
, each

will be used to transfer resources through single-location invariants at iteration i of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21

https://gitlab.mpi-sws.org/iris/tutorial-popl21
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