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References on exercises

» more info on the proof mode here you should get this here:
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof mode.md
or searching online “iris proof mode”

» more guided examples/exercises in the POPL 2020 Iris tutorial

» on popular demand | could do the exercises


https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md
https://gitlab.mpi-sws.org/iris/tutorial-popl20

An example



Combining progress about a shared resource

A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.
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Combining progress about a shared resource

A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.

let r = ref 0 in
let 1 = newlock () in

(fork)
acquire 1; [ acquire 1;
r:=I!r+1; | r:=Ir+1;
release 1 | release 1
(join)
acquire 1;

assert (!r = 2)
Let us prove safety with the lock rules. Reminder of the lock Hoare triples:

{R} newlock () {¢.0isLock ¢ R}
isLock ¢ R = { True} acquire ¢ {R}
isLock ¢ R+ {R} release ¢ { True}
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How a proof with invariants would go

{}

let r = ref 0 in
{r+ 0} so for some clever R,

{R}

let 1 = newlock ()

{isLock | R} (persistent)
{} {}
acquire 1; acquire 1
{R} {R}
r:=1Ir+1; r:=1Ir+1;
{R} {R}
release 1 release 1
{} {}

acquire 1;

{R}

assert (!r = 2) impossible: R is clever but invariant



What are invariants lacking?

At high-level the program has two interleavings:
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assert (!r = 2)
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What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in 0

let 1 = newlock () in thread 1 thread 2
acquire 1; || acquire 1;
r:e=I!r+1; || r:=!r+1; 1 1
release 1 || release 1

acquire 1;

assert (!r = 2) thread 2 thread 1

2

A proof would need need to reflect this somehow.

» some notion of state embedded into the separation logic
» splitting (and combining) states into parts for each thread

» all possibles orders: combining is commutative and associative (same reason as for )



One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let rl = ref 0 in

let r2 = ref 0 in

let 1 = newlock () in

acquire 1; | acquire 1;

r:=I!r+1 | r:=Ir+1

ri :=!rl +1 [ r2z :=1!r2+1

release 1 | release 1
acquire 1;

assert (!r = 2);
release 1



One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let rl = ref 0 in

let r2 = ref 0 in

let 1 = newlock () in

acquire 1; | acquire 1;
r:=I!r+1 | r:=Ir+1
rl := !rl +1 | r2 :=1!r2 +1
release 1 | release 1

acquire 1;

assert (!r = 2);

release 1

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.



One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in
let rl = ref 0 in
let r2 = ref 0 in

let 1 = newlock () in
acquire 1; | acquire 1;
r:=I!r+1 | r:=Ir+1
rl := !rl +1 | r2 :=1!r2 +1
release 1 | release 1

acquire 1;

assert (!r = 2);

release 1

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.
Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

. 1/2 1/2
isLock | (3n3n13ny r— nxrn s ny* ro s Ny n=ny+ ny)



One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in
let rl = ref 0 in
let r2 = ref 0 in

let 1 = newlock () in
acquire 1; | acquire 1;
r:=I!r+1 | r:=Ir+1
rl := !rl +1 | r2 :=1!r2 +1
release 1 | release 1

acquire 1;

assert (!r = 2);

release 1

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.
Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):
isLock | (3n3n13ny r— nxrn s ny* ro V3 Ny n=ny+ ny)

but: 1) not modular, 2) changes the code 3) a special case of ghost
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let r = ref 0 in -
(ri0}, find R AL /A st
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let 1 = newlogh() o
{isLock IR A\ x 37,7411}



Desiderata for a proof with ghost state

let r = ref 0 in

{R*\:i *wA"} 777777

let 1 = newlock ()
{/sLockIR*‘A‘ *‘A"}

(A | A}



Desiderata for a proof with ghost state
let r = ref 0 in
{r+> 0} find R,IALIA st
{(R«lAlxl A}
let 1 = newlock ()
{isLock | R+ A1« A}

Al YA
(A} A1)
acquire 1; acquire 1
r:=1Ir+1; r:=1Ir+1

release 1; release 1



Desiderata for a proof with ghost state

let r = ref 0 in

{R*‘,W*‘AM} 777777

let 1 = newlock ()
{/sLockIR*‘A‘*‘A"}

{ A} {A’}
acquire 1; acquire 1
r:=!r+1; r:=1!r+1
release 1; release 1

{81 (=8



Desiderata for a proof with ghost state

let r = ref 0 in
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let 1 = newlock ()
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Desiderata for a proof with ghost state

let r = ref 0 in

{R*‘,W*‘AM} 777777

let 1 = newlock ()
{/sLockIR*‘A‘*‘A"}

{Al} {A’ ¥
acquire 1; acquire 1
r:=!r+1; r:=1!r+1
release 1; release 1
{B}y || {8}
{B B}
aé&ﬂire 1;
{R*:Bi*iB’}}
{r—2}

assert (!r = 2)



Desiderata for a proof with ghost state

let r = ref 0 in

,,,,,,

{R*\ 77\ *\A/‘}
let 1 = newlock ()
{ISLOCk/R*\A\ *\A/‘}

Ghost updates/triples needed:
1.r—0= R*\Aw*\A/‘

{L’f\,\} {E\f}} 2. {R*‘E/i:j} ri=tr+1 {R*[él}
acquire 1; acquire 1 3. {R*LAZ;} Foom I+ 1 {R*iﬁlﬂ}
r:=Ir+1; r:=I!r+1 4-R*}7771*}73713r0—>2
release 1; release 1 -
{8 | {8

{ Bw >|<‘ B’ ‘}

acquire 1

(R« B!+ B}

{r—2}

assert (!r = 2)



Desiderata for a proof with ghost state
let r = ref 0 in
{r+> 0} find R,IALIA st
{(R«lAlxl A}
let 1 = newlock ()
{isLock | R+ A1« A}

Ghost updates/triples needed:
1.r—0= R*&Z\j *[,:4?}

(A A 2 AR(A e emtr e {Re1B)
acquire 1; acquire 1 3. {R* A} ri=tr+ 1{Rx B'I}
r:=Ir+1; r:=Ir+1 4.R*r7ﬁl*17§33r>—>2
retease U retease 1 Both wri‘tieiié r‘isioir goes in R. Let's try:
8y | tsy  PomwiemroresiRils

{ BB} R=3nr nx P(n).

acquire 1; R

{R*I B B} for some clever P.

{r—2}

assert (!r = 2)



Constraint #1: analysis

True = [ P(0)1 1Al A
e == frame
r0 = r>0x PO)I* Al x A
===l _Leol -1 exists-intro
r=0 = 3nr—=nx P(n) s Ax A



Constraint #2 and #3
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,,,,,,, == exists-right
r|—>n+1*\P(n)l*lA = 35 rl—>n>|<\P( )| *JB; _
,,,,,,, B === === incr+seq
{r'—>n>|<\P()1*1A1}r:=!r+1{§!n r—n x P(n') % B of
,,,,, | L,,L77 _ 7 [ H ts- t
{R*M\j}r 1= !r+1{R*375J} existsTie

— — acquire+seq+release
{{Al} acquire r; r := Ir + 1; release r { B '}



Constraint #4

Now to conclude the program:

P(n)i*xiB x1B"" = n=2
‘L,:::i:‘ ::::‘ ‘5:::‘ frame
r»ﬁn*LP(n)i*lB;*LB’i = r=snsn=2
e e conseq
resn% P(n)i« B x1B'I = r?2
beooce = bo-o exists-intro




Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

T 2P0 <41+ 4

P(n) | * :*A’] = P(n +1)] % :_7’7:
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Purely in terms of ghost, our constraints are, for all n,

Ghost updates needed for our example
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Purely in terms of ghost, our constraints are, for all n,

Ghost updates needed for our example

ghost allocation
ghost update
ghost update
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Ghost updates needed for our example

Purely in terms of ghost, our constraints are, for all n,
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Step back

What is ghost state?



Demonic (V) and angelic (3) non-determinism

Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:
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Demonic (V) and angelic (3) non-determinism

Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:

(e,0,8)
/ \
(e',0',8) (e",0",g)
3 \ 3
(@.og) (e (o) (o)
/N / \ /\ v
(e”/,a”/,g’)

Visible in the definition of wp, e.g. when e is not a value wp e ¢ =
Vo S(o) = 2..VeVo' (e,0) — (€,0') +« = S(o')xwp € ¢
where = contains an existential: [ P](a) = ...3b...[P](b)



Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, -) — in fact a semigroup

At any given time:

» each thread t; “owns” one element g; € M, called resource

ownership of g; is written | g; B
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Composition, monoids, updates

Associative symmetric composition: our ghost state is a monoid (M, ) —

At any given time:

» each thread t; “owns” one element g; € M, called resource
. . . B
ownership of g; is written i,gfj'
» each unopened invariant /; “owns” a resource h; that satisfies it

» the combination g1 -...-gn- h1-...- hg is the global resource
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Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, -) — in fact a semigroup

At any given time:

» each thread t; “owns” one element g; € M, called resource

ownership of g; is written | g; B
» each unopened invariant /; “owns” a resource h; that satisfies it

» the combination g1 -...-gn- h1-...- hg is the global resource

The prover performs updates both: [éﬂ; = (éf} and [/E; = lihﬂ
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Validity
Idea: pick an invariant on the global resource, validity: valid : M — Prop
valid(g1-...-gn-h1-...- hy) atall times

Follows rely-guarantee-style protocol:

> ownership lfé,ﬂ; provides validity of some global resource:

gij = J8others € M valid(g; - gothers)

|
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Validity

Idea: pick an invariant on the global resource, validity: valid : M — Prop

valid(g1-...-gn-h1-...- hy) atall times

Follows rely-guarantee-style protocol:

> ownership lfé,ﬂ; provides validity of some global resource:

1

= valid(g;)

== - or just
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Validity
Idea: pick an invariant on the global resource, validity: valid : M — Prop
valid(g1-...-gn-h1-...- hy) atall times

Follows rely-guarantee-style protocol:

> ownership lfé,ﬂ; provides validity of some global resource:

== - or just -
' 8i | = JGothers € M valid(g; - Gothers) ' gi | = valid(g;)

1

» an update [éj = [éf} requires preservation of global validity:

Vg € M valid(g; - g) = valid(g! - g) valid(g;) = valid(g;)
&i=4]




Validity
Idea: pick an invariant on the global resource, validity: valid : M — Prop
valid(g1-...-gn-h1-...- hy) atall times

Follows rely-guarantee-style protocol:

> ownership lfé,ﬂ; provides validity of some global resource:

== - or just -
' 8i | = JGothers € M valid(g; - Gothers) ' gi | = valid(g;)

1

» an update [éj = [éf} requires preservation of global validity:

Vg € M valid(g; - g) = valid(g/ - g) valid(g;) = valid(g!) = gi~ g
& =gl

gi ~ g is called a frame-preserving update
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Designing the appropriate monoid

Smaller subproblems: split P as \f’:(:):i =y QX)) *x Qy) xn=x+y
(Before splitting) (Subproblem + more steps)
True = ria*(o)*: AL fjjjj ‘

77777777777777



Designing the appropriate monoid
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(same for \7\711, 77777 5’61)

Q(0) | B! = False
> Q(0) - Ais “the whole thing", so that: Q(0)- A~ Q(1)- B
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Commutative-monoid-with-validity (M pa, -)

Mpaig 2= full(0) | full(1) | half (0) | half (1) | x

Operations and validity:

—-— | full(x) half(0) half(1) X
full(y) X X X X
half (0) X full (0) X X
half (1) X X full(1)  x
X X X X X

va/id(—)‘ True True True  False



Commutative-monoid-with-validity (M pa, -)

Mpaig 2= full(0) | full(1) | half (0) | half (1) | x

Operations and validity:

—-— | full(x) half(0) half(1) X
full(y) X X X X
half (0) X full (0) X X
half (1) X X full(1)  x
X X X X X

va/id(—)‘ True True True  False

Properties of interest (no full(—), no x):
valid(half (x) - half(y)) = x=y
half(0) - half(0) ~~ half(1) - half(1)



Demo: half_ra.v

Exercise: start_finish.v


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/half_ra.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/start_finish.v

Quiz

Properties we have:

r——n

(1).

half(1)

! |
;*\

half (1)

=

1 half (0)

half (0)

Properties we want:

B/
| EP—

B

Ik

X

Q(1)

A
5

Ik

(0)
0]

X =

half(1) 7

B =

half(0) ,

A=

Can we choose: Q(x) = half(x) ,
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Let us call commutative-monoid-with-validity resource algebra® (RA)

The product of two RA (A, -4, valida) and (B, -g, validg) is defined as
(A X B, *Ax B> validAxg) where
(a, b) "Ax B (a’, b,) = (a ‘A a’, b ‘B bl)
validay g((a, b)) = valida(a) A validg(b)
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Let us call commutative-monoid-with-validity resource algebra® (RA)
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Products

Let us call commutative-monoid-with-validity resource algebra® (RA)

The product of two RA A and B is defined as A x B with

(a,b)-(a',p) = (a-d,b-b)
valid((a, b)) = valid(a) A valid(b)

Property: frame-preserving update is pointwise:

a~a b~ b

(a,b) ~ (', b)




Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
— = ‘ None Some(a)
None None Some(a)

Some(b) | Some(b) Some(a- b)

valid(—) | True  valid(a)



Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
— = ‘ None Some(a)
None None Some(a)
Some(b) | Some(b) Some(a- b)
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Properties of frame-preserving update:
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Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
— = ‘ None Some(a)
None None Some(a)
Some(b) | Some(b) Some(a- b)

valid(—) | True  valid(a)

Properties of frame-preserving update:

a~~b
Some(a) ~~ None

Some(a) ~~ Some(b)

In the following we write € for the unit None and a for Some(a)



The algebra needed for the example

Let's use the RA : option Mpzr X option Mpaf

(AL = e half(0)
B = e half (1)
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let r = ref ©

|
|
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|
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. e
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let r = ref 0

let 1 = newlock ()
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|
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let r = re1c 0
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we choose R = Sy x+y *| half (x), half (y) |
tet L=rnelock O
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let r = re1c 0

{ha/f( ) € *we ha/f(O)\*wha/f(O) half (0 )w*r»—>0}

we choose R = Sy x+y *| half (x), half (y) |
tet l=relock )




{{ull(0). full(0) )

{‘ half (0), ¢ *| ¢, half (0) | ! half(0), half(0) '}

o>/ __* 7

1et r = re1c 0

e Choose R = HXY re X+y*‘ ha/f( ), ha/f(y) ‘
tet l=relock )

{ half (1), €1 %€ half(1) | * R}

{w half (1 ),ejl*le,ha/f(l)l*r»—)x—l—y*wha/f( x), half(y) I}

- 7 L A



{{ull(0). full(0) )
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1et r = ref 0

e Choose R= HXY “—>X+yw ha/f( ), ha/f(y)‘
tet l=relock )

{ “haif (1 ) €l %€, ha/f(l)j *r x+y*‘ ha/f(x) half(y) |
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{‘ half(0), € |+ €, half (0) |« half(0), half (0) |}
let r=refo B
{ half (0), €| +! ¢, half(0) | +| half (0), half(0) | + r — 0}
we choose R = Jxy r > x +’y’;7'h;’/F(") 'h'a’/?( y)!
let 1 = newlock ()
{ half (0), ¢ | x| ¢, half(0) I}
{i half(0), ¢!} {i, half(0) |}
{’55/?( 1)/} {f{, half (1) 1}
{ half(1 )¢l %l e half(1 )1}
acaai;a{“ T
{ half (1), ¢ | +! €, half (1) | + R}
{Lha/f(l), €l *| e“h‘a‘/?(‘f)j sr > x +y x| half(x), half (y) |}
{ half(1), € * w‘e‘ L half (1) r s x +y * “55/?2;5‘/75/?‘(‘5 ax=1xy
{{ half (1), ¢ :*‘e‘ ,half(1) | *r»—>2*ff;5/f(")’ half(y)  «+x=1%y=
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{‘ half(0), € |+ €, half (0) |« half(0), half (0) |}
let r=refo B
{ half (0), €| +! ¢, half(0) | +| half (0), half(0) | + r — 0}
we choose R = Jxy r > x +’y’;7'h;’/F(") 'h'a’/?( y)!
let 1 = newlock ()
{ half (0), ¢ | x| ¢, half(0) I}
{i half(0), ¢!} {i, half(0) |}
{’55/?( 1)/} {f{, half (1) 1}
{ half(1 )¢l %l e half(1 )1}
acaai;a{“ T
{ half (1), ¢ | +! €, half (1) | + R}
{Lha/f(l), €l *| e“h‘a‘/?(‘f)j sr > x +y x| half(x), half (y) |}
{ half(1), € * w‘e‘ L half (1) r s x +y * “55/?2;5‘/75/?‘(‘5 ax=1xy
{{ half (1), ¢ J:*‘E “half(1) | *r»—>2*ff;5/f(")’ half(y)  «+x=1%y=



{{ull(0). full(0) )

{w half (0), € | *w ¢, half (0) J} >|<w half (0), half(0) 1}
letr=refo
{ half(0), €|« ¢, half(0) | %I half (0), half (0) |  r + 0}
we choose R = 3xy r -+ x +};T773'/F(") half (y) |
let 1 = newlock )
{ half (0),e! i ¢, half(0) 1}
{ half (0),€¢ 1} { e, half (0) 1}
{ 7/55/?( 1),e '} {fé, half (1)1}
{ half(1 ), € e xle half(1)1}
acquire U
{ half (1),¢! i ¢, half (1)1« R}
{Lha/f(l), € ) e“f;a‘/?(‘l‘)i %> x+y | half(x), half (y) |}
{ half (1), ¢! * Te‘  half (1) 15 r e x+y = TEE/‘fZQTEE/?‘(‘S xx=1xy
{i half (1), e  half(1) 1 2 fﬁa’/f(")"h'a'/i(")' =1lxy=
=)
assert (!r = 2)
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Zoom on one thread

{r—= x4y * half(x), half (y) 1 * half(0),e '} hence x =0 and

_______________ | L

{r—=1+yx full(1),half(y) '} split

{r+>1+4yx* half(1), half(y) | * half(1),ei} F-intro

{3xy r= x+y *i half(x), half (y) k1 half(1),e1}

77777777777777777777777777 | L____y 77

release R



Zoom on one thread

{r— l—i—y*whalf(l) ha/f(y)‘ * 1 half (1), e} F-intro

{3xy r= x+y*i half(x), half( )w*‘half( ),e1}

{Relhalf D).y



Demo: incr2.v


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/incr2.v

Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

» handle more threads e.g. (¢, ¢, half(0), €)
» continue the rest of the program keeping (full(0), full(0), unrelated)

> reuse a proof, allow custom resource algebras, etc
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» handle more threads e.g. (¢, ¢, half(0), €)
» continue the rest of the program keeping (full(0), full(0), unrelated)
> reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...



Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

» handle more threads e.g. (¢, ¢, half(0), €)
» continue the rest of the program keeping (full(0), full(0), unrelated)
> reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...

Answer: package all of that into one monoid



RA of functions

If M is an RA, then X — M is an RA for any X:

f(x)~ a

(f - g)(x) & Mx.f(x) - g(x) valid(f) £ Vx.valid(f(x)) m



RA of functions

If M is an RA, then X — M is an RA for any X:

f(x)~ a

(f - g)(x) & Mx.f(x) - g(x) valid(f) £ Vx.valid(f(x)) m

and so is the set of partial functions X — M. In case M has no unit, allows to talk about
the singleton partial function:



Frame preservation and allocation
Problem: creating the new ghost resource ng }7 is impossible!
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Because [y := g] could be a potential frame of itself:

valid(0 - [y == g])

—valid([y = g] - [y := g]) 04 [y:= g



Frame preservation and allocation
Problem: creating the new ghost resource ng }7 is impossible!

Because [y := g] could be a potential frame of itself:

valid(0 - [y == g])

. @ =

—valid([y := g - [v = g]) 7 b=l

In fact a ~~ b is redefined as a ~» {b}. More general definition: a ~~ B where B C M:
a~ B2V e M’ valid(a-c’) = 3be B valid(b-c')

M 21 UM a-1L 224



Frame preservation and allocation
Problem: creating the new ghost resource ng }7 is impossible!

Because [y := g] could be a potential frame of itself:

valid(0 - [y := g]) . B
—valid([y = g] - [y := g]) s DA i=gl

In fact a ~~ b is redefined as a ~» {b}. More general definition: a ~~ B where B C M:
a~ B2V e M’ valid(a-c’) = 3be B valid(b-c')
M 21 UM a-1L 224
We can now allocate if we have infinite possibilities and the rest of the world ¢’ is finite:

valid(g) valid(g)
0~ {[y:=g]|veN} True = Jy Eéjv

true for N M but not for N — M.



Several types of RA

The dependent product of finite partial functions to each M; is an RA:



Several types of RA

The dependent product of finite partial functions to each M; is an RA:

The ¥ of “iProp X" does the bookkeeping of saying which i correspond to which M;.
The command

Context ‘{inG ¥ M}
ensures that M is somewhere in the set and

Context ‘{mylibG X}

ensures that all of the “M" of mylib are there too.



Persistent knowledge
How to state that a reference will not change once set?

let check r =
let x = Atomic.get r in
let y = Atomic.get r in
assert (x =0 || x =vy)

let try_set r v =
Atomic.compare_and_set r 0 v

let r = Atomic.make 0

try_set 3 || try_set5 || try_set 7 || -check ()



Persistent knowledge
How to state that a reference will not change once set?

let check r =
let x = Atomic.get r in
let y = Atomic.get r in
assert (x =0 || x =vy)

let try_set r v =
Atomic.compare_and_set r 0 v

let r = Atomic.make 0

try_set 3 || try_set5 || try_set 7 || -check ()

Specs for get: once the returned value is not 0 then it will never change.

we also need some resource “pending” for before shooting.



Resource Algebras
A resource algebra is a resource algebra® plus a core (Pottier, 2013):

|| M= M
Intuition/axioms/properties:

» |a| is a ‘duplicable’ part of a if it exists
» if a has no ‘duplicable’ part, then |a] = L



Resource Algebras
A resource algebra is a resource algebra® plus a core (Pottier, 2013):

|| M= M
Intuition/axioms/properties:

» |a| is a ‘duplicable’ part of a if it exists

» if a has no ‘duplicable’ part, then |a] = L
> if |a| # Lthena=a-|a|=a-]|a] |a] = ...
> if |a| # L then [[a]| = [a] = [a] - [4]



Resource Algebras
A resource algebra is a resource algebra® plus a core (Pottier, 2013):

|| M= M
Intuition/axioms/properties:

» |a| is a ‘duplicable’ part of a if it exists

if a has no ‘duplicable’ part, then |a| = L

if |a|# Lthena=a-|aj=a-|a| |a] =...

fal # L then [[al| = [a] = [2]-|a]

if there is a unit € then |a| # L (]a| is at least ¢€)
no core for Mpar: |half (x)| = |full(x)| = | x| = L

vvyVvyVvVyy



Resource Algebras
A resource algebra is a resource algebra® plus a core (Pottier, 2013):

|| M= M
Intuition/axioms/properties:

» |a| is a ‘duplicable’ part of a if it exists

if a has no ‘duplicable’ part, then |a| = L

if |a|# Lthena=a-|aj=a-|a| |a] =...

fal # L then [[al| = [a] = [2]-|a]

if there is a unit € then |a| # L (]a| is at least ¢€)
no core for Mpar: |half (x)| = |full(x)| = | x| = L

vvyVvyVvVyy

The persistent modality [J is defined using | — |:

[OP],(a) = [PT,(Ia])
Intuition: 0P is like P« P P x ... (like !P in linear logic)



One shot RA

M oneshot 1= pending | ShOt(n) | X
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X X X X

X X X X|X
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One shot RA

M oneshot 1= pending | ShOt(n) | X

Composition is similar to Mpar. If m % n:

‘ pending shot(n) shot(m) X
pending X X X X
shot(n) X shot(n) X X
shot(m) X X shot(m) X

X X X X X
valid ‘ True True True  False
| — | ‘ 1 shot(n) shot(m) L



One shot RA

M oneshot 1= pending | ShOt(n) | X

Composition is similar to Mpar. If m % n:

‘ pending shot(n) shot(m) X

pending X X X X

shot(n) X shot(n) X X

shot(m) X X shot(m) X

X X X X X
valid ‘ True True True  False

| — | ‘ 1 shot(n) shot(m) L
Properties:

shot(n) - shot(n) = shot(n) pending ~~ shot(n) valid(shot(n) - shot(m)) = n=m



M oneshor is derivable from existing RAs
Moneshor has three ingredients:

» it has two disjoint components

» shot(—) has the agreement property
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M oneshor is derivable from existing RAs
Moneshor has three ingredients:

» it has two disjoint components
» shot(—) has the agreement property

» pending is exclusive i.e. V¢ —valid(pending - ¢) — why is it useful?
anything exclusive ~~ anything valid
And indeed we can derive it from the corresponding RAs:
Mooneshot = Ex(1) +,; Ag(Z)
where:

» Ex(X) is the exclusive RA over a set X
» Ag(X) is the agreement RA over a set X
> M;i +; My is the sum of two RAs M and M



About [

Demo: one_shot.v

Some remarks:

» you can recover the reference from the invariant — see one_shot_cancel.v

» for ghost ownership the (1 modality is not strictly necessary since we can duplicate it by
hand, but it is convenient to have shot(n) in the persistent context

» [ is very convenient for consise definitions, such as

P= Q2LO(P +5Q)
{P}e{Q} = 0(P + wp e Q)


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot_cancel.v

Authoritative RA
The authoritative RA over an RA M is, wheree a, b € M,

Auth(M) ::=ea | ob | e(a,b) | x
Intuition:

> eais the unique global authority, or authoritative view
you need ea to update
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» ob is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions



Authoritative RA
The authoritative RA over an RA M is, wheree a, b € M,

Auth(M) ::=ea | ob | e(a,b) | x
Intuition:

> eais the unique global authority, or authoritative view
you need ea to update

» ob is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions

Main properties:

valid(a - c)

ea-ob~e(a-c)-o(b-c)

valid(ea-ob) = b < a



Authoritative RA

Operations:
ea ob e(a, b) X
o X (4, b) X X
ob/ ©(a, b)) ofb-b) e©(a,b-b) X
e (d,b) X o(a,b-b) X X
X X X X X

valid(—) | valid(a)  valid(b)  valid(a)Ab<a False
-1 | &L ob ob 1

we could almost derive it by Auth(M) = Excl(M)’ x M but we need valid(eo(a, b)) to
also require b<a £3ca=b-c.



Example usage of Auth(M)

Using Auth((N, +)) we can prove that 4 threads doing:

A . .
€incr = acquire 1; incr r; release 1

will increment r at least four times. Under the lock invariant R = 3nrs nx en!’

tockIR1- (307} e {417
isLock | R |- {[CEGJ’Y} (eincr || €incr H €incr H eincr) {[oi{'rf}
R+ {EZI:}V} tr{n.n > 4}



Example usage of Auth(M)

Using Auth((N, +)) we can prove that 4 threads doing:

A . .
€incr = acquire 1; incr r; release 1

will increment r at least four times. Under the lock invariant R = 3nrs nx en!’

ok R {207} ens {17
isLock | R |- {[CEQTY} (eincr || €incr H €incr H eincr) {[oi{'rf}
RE{o4"} ir{n.n >4}

Indeed with | en|” 375[}7 we can only prove 4 <y 1) n which means 4 < n

Intuitively o4 does not prevent “other” ol's from contributing to en



Checking counter monotonicity using Auth(N,,.x)

let r = Atomic.make 0

let read () = Atomic.get r

let incr ()
Atomic.fetch_and_add r 1

let check () =
let x = read () in
let y = read () in
assert (y >= x)

let rec loop f () =
f (); loop f ()

let () =
let open Domain in
let d1 = spawn (loop incr) in
let d2 = spawn (loop check) in
join d1; join d2
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Let Npax = (N, max)
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Checking counter monotonicity using Auth(N,,.x)

let r = Atomic.make 0
Let N = (N, max
let read () = Atomic.get r max ( ’ )

let incr ()
Atomic.fetch_and_add r 1

Invariant and specs:

let check () = o - =L
tet x = read () :!.n {176;{17} read () {k.k >n *176/7(7}7}
let y = read () in [P — [
assert (y >= x)

let rec loop f () =
f (); loop f ()

let () =
let open Domain in
let d1 = spawn (loop incr) in
let d2 = spawn (loop check) in
join d1; join d2



Checking counter monotonicity using Auth(N,,.x)

let r = Atomic.make 0

let read () = Atomic.get r

let incr ()
Atomic.fetch_and_add r 1

let check () =
let x = read () in
let y = read () in
assert (y >= x)

let rec loop f () =
f (); loop f ()

let () =
let open Domain in
let d1 = spawn (loop incr) in
let d2 = spawn (loop check) in
join d1; join d2

Let Npax = (N, max)

Invariant and specs:

[on 7} ress 0 {kck > neok]'}

ffon Y sner 0 (ol ¥ 1)



Checking counter monotonicity using Auth(N,,.x)

let r = Atomic.make 0

let read () = Atomic.get r

let incr ()
Atomic.fetch_and_add r 1

let check () =
let x = read () in
let y = read () in
assert (y >= x)

let rec loop f () =
f (); loop f ()

let () =
let open Domain in
let d1 = spawn (loop incr) in
let d2 = spawn (loop check) in
join d1; join d2

Let Npax = (N, max)

Invariant and specs:

[on 7} ress 0 {kck > neok]'}

ffon Y sner 0 (ol ¥ 1)

Proof of check:

~
o
(@]
)
—
~
o
~+
>
I

read ()
{XZO*?LOXJ}V} let y = read ()



Checking counter monotonicity using Auth(N,,.x)

Demo: monotonic_counter.v


https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/monotonic_counter.v

Fractional RA
Definition:

2 VN 2 va [ g+q ifg+qd <1
Frac = (0,1]NQ | x  valid(q)=q# x |q| =1 qq—{x otherwise
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Fractional RA

Definition:

N (g & 2 ra [ a+qd ifgtqd <1
Frac £ (0,1]NQ | x  valid(@)2q4x |21 qq —{ AR
Easier definition:

Frac £ Q™ valid(q) £ q <1 gl = L 9-d =q+4

You still have to be a bit careful, here is a wrong definition:

Frac 2 Q valid(g) 20 < g <1 lg| = L 9-d=2q+¢



Fractional RA

Definition:

/o /<
Frac 2 (0,1]NQ | x  valid(q) £ q# x |q/ 2 L q.q’é{q+q ifg+q <1

X otherwise
Easier definition:
Frac £ Q™ valid(q) £ q <1 gl = L 9-d =q+4
You still have to be a bit careful, here is a wrong definition:
Frac £ Q valid(g) 20 < g <1 lg| = L q9-d2q+q

For once, updates do not matter, still, you can wonder when g ~~ ¢’ holds



Authoritative fractional RA

Derived construction: FracAuth(M) £ Auth((Frac x M)?) with notations:

022 o(L,2) oq b £ o(q, b)

Properties:

valid(a - ¢)

®a-04b~+ e(a-c)-o4(b-c)

ogrq/ (b b)=ogb-ogb valid(ea-ogzb) = b=<a
valid(a")

valid(ea-o1b) = b=a ;
e3-01b~> @3 -07a

/



Example usage of FracAuth(M)

Using FracAuth((N, +)) we can finally prove modularly that k threads doing:

N ) .
€incr = acquire 1; incr r; release 1

will increment r at exactly k times. Under the lock invariant R=3n r—n *‘ on

[

isLock I R I- {*51;;6 j } €incr {(51}41 ”}

,,,,,,,,,,

,,,,,



Other common uses of Auth
When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc ™2 Excl(Val))
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Other common uses of Auth : heaps
When Loc and Val are any set (not necessarily RAs), this is a useful RA:
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£+ v is derived; threads and invariants own the fragmental view; the wp ties the

authoritative view lLoa Jl%eap to the actual physical steps.
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When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc ™ Excl(Val)) s v 2 off = v] e

£+ v is derived; threads and invariants own the fragmental view; the wp ties the

authoritative view lLoa Whe"" to the actual physical steps.

For fractional permissions, uses View(A, B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A — B — Prop:
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Other common uses of Auth : heaps
When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin Excl(Val)) fs v 2 [6[’[;*\*/]*1}7/@,;

£+ v is derived; threads and invariants own the fragmental view; the wp ties the

authoritative view lLoa Whe"" to the actual physical steps.

For fractional permissions, uses View(A, B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A — B — Prop:

,,,,,,,,,,,,,,

View(Loc — Val, Loc — Frac x Val) TA=_—— ol = (g, )] Vheap

Singleton type class mechanism not to write vpeap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {
gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {
gen_heap_inG :: gen_heapGpreS L V Sigma;
gen_heap_name : gname; [...]



Other common uses of Auth

Another very interesting resource algebra is:

Auth(N fin Agree(iProp)))



Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N T Agree(iProp))) L = ofv := agree(P)] | 1w

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above.



Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N T Agree(iProp))) L = ofv := agree(P)] | 1w

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

» iProp is a predicate over some F(iProp), ¥ is a set of functors,
we have a domain equation for iProp

>
» we need step indexing, ordered families of equivalences, RA become “camera”,
>

the functors in £ are now contractive, ...



Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N T Agree(»iProp))) L L }lfg[lf;";é;ée’(’ﬁéﬁ Py

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

» iProp is a predicate over some F(iProp), ¥ is a set of functors,
we have a domain equation for iProp

>
» we need step indexing, ordered families of equivalences, RA become “camera”,
>

the functors in £ are now contractive, ...



Manipulating invariants — from /Iris from the ground up

INV-ALLOC
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Manipulating invariants — from /Iris from the ground up

INV-ALLOC It
>PHE¢ P
INV-OPEN INV-CLOSE
Leé Le &
l 535\“} DP*({!}}VDIS L % DP*(EEEJVDIS 8\{L}95 True
INV-ACCESS
NCE

N F W (>Px(>P—x EWRE True))



Manipulating invariants — from Iris from the ground up

INV-ALLOC It
> Pk e[ P]
INV-OPEN INV-CLOSE
BTSN pa ™ P Pa (17 S5 T
INV-ACCESS
NcE
N FEBEW (b P (o P — EWEBE True))
WP-ATOMIC

WP-VUP

atomic(e)
Eewpg e {v. Be @(v)} - wpg e {P)

SIS wpg, e {v. Epfi @(v)} - wpg, ¢ (@)



Brace yourself

Full definition of world satisfaction, invariants, view shifts, wp



Excerpt from Iris from the ground up

N 23 eNt[P]
OB PLW & "™ B oW &7 xP)
P =802 P i) 5012+ (o0 % Exvan
wps e (@) 2 (e € Val A B¢ (e)) o 4
v(e ¢ Val AVo. S(o) —+ £ (red(e, o)
A Ve, 02,8 ((e,0) =t (e2,02,8p)) —"BE
(S(o2) #wpf &3 (@) 5 Ky wps € (v.True})) )

{PYe{®)3 2 0P —wpf e {®))



Excerpt from Iris from the ground up

FUP-MONO FUP-INTRO-MASK FUP-TRANS
- _
PO &EHCE 51'35252'353p|—51|353P
&1 '352 pPE & '352 0 Truet & '352 & '351 True

P-UPD FUP-TIMELESS SIS
FUP-FRAME FUP-U timeless(P) INV-PERSIST

Q* & bgzpf_ 51L+J5f'352w5f(Q*P) Epl_ '36_]) ENFDN
>P-BEeP

INV-ACCESS
INV-ALLOC NcCE

N
> PHBelP
i N F EéW (> Px (> P —x EWNgE True))

Fig. 15. Rules for the fancy update modality and invariants.



A resource algebra (RA) is a tuple (M, V : M — Prop, |—| : M — M? (-} : M x M — M) satisfying:

Ya,b,c.(a-b)-c=a-(b-¢)
Va,b.a-b=b-a
Va.la|eM = |a|-a=a
Va.lal € M = |lal| = |al
Va,b.lale M Na< b= |bleM A la| < 1b|
Ya,b. V(a-b)=V(a)
where M?éMtr){J_} with a - 121.424
a<xb&3ceM.b=a-c
a~BEV eM’ V(a-)=3beB V(b )

a~b2a~{b)

(RA-ASSOC)
(RA-COMM)
(RA-CORE-ID)
(RA-CORE-IDEM)
(RA-CORE-MONO)

(RA-VALID-OP)

(RA-INCL)

A unital resource algebra (uURA) is a resource algebra M with an element ¢ satisfying:

V(e) YaeM.s-a=a

Fig. 3. Resource algebras.



Variants/instances of Iris



Relaxed memory

» Invariants such as ‘ lock — 0V lock — 1x3nr+—n ‘L only make sense if there is an
instantaneous view of the memory, which is not true in relaxed memory

» for now, axiomatic memory models do not fit Iris, but view-based operational memory
models (for e.g. for release-acquire synchronisation) can be made to fit

» single-location invariants which can provide knowledge + special mechanisms
(escrows) to transmit non-persistent resources




Linearizability

Under sequential consistency linearizability can be reasoned about using logically atomic
triples:

(P)e(Q)
means: “at the linearization point in the execution of e, the resources in P are atomically
consumed to produce the resources in Q"



Liveness?

» Transfinite Iris: ordinal step indices for the existential property and termination

‘ Standard lIris ‘ Transfinite Iris

if E3x P then for some x F P X v
>(Ix P) < Ix>P v X
>(Px Q) & >P*x>Q v X

» Nola: “no later” at invariant opening, replaced with restricted formulas

Iris Nola

{Px>R}e{Q >R} [P«[F]lel@x*[F]] F € Fml

{P+[R]'}e{@} [P+[FllelQ]




Variants of Iris

complexity analysis: resources can be time/space credits/receipts,
type soundness, e.g. rustbelt

relational separation logics

session types, channels, distributed systems, cryptographic reasoning

probabilities, non-determinism

vVvyvyvVvyYyvyy

relaxed memory



Exercise

(1) design a resource algebra such that:

valid(Start) Start ~~ Finish
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(2) design a resource algebra such that:

valid(r(0)) Vne N r(n)=t(n)-r(n+1) —walid(t(n) - t(n))

motivation: allocate once B3y | r(0) " to generate an infinitely many tokens | £(/) | 7, each

will be used to transfer resources through single-location invariants at iteration 7 of a loop.
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will be used to transfer resources through single-location invariants at iteration 7 of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?
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Exercise

(1) design a resource algebra such that:

valid(Start) Start ~~ Finish Persistent(; Finish | B

(2) design a resource algebra such that:

valid(r(0)) Vne N r(n)=t(n)-r(n+1) —walid(t(n) - t(n))

motivation: allocate once B3y | r(0) " to generate an infinitely many tokens | £(/) | 7, each

will be used to transfer resources through single-location invariants at iteration 7 of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21


https://gitlab.mpi-sws.org/iris/tutorial-popl21

