
1

An introduction to Iris
part 2

Jean-Marie Madiot & François Pottier

JFLA 2026, Oberbronn



2

References on exercises

▶ more info on the proof mode here you should get this here:
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md

or searching online “iris proof mode”
▶ more guided examples/exercises in the POPL 2020 Iris tutorial
▶ on popular demand I could do the exercises

https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md
https://gitlab.mpi-sws.org/iris/tutorial-popl20


3

An example



4

Combining progress about a shared resource
A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.

let r = ref 0 in

let l = newlock () in

(fork)

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

(join)

acquire l;

assert (!r = 2)

Let us prove safety with the lock rules. Reminder of the lock Hoare triples:

{R} newlock () {ℓ.□isLock ℓR}
isLock ℓR ⊢ {True} acquire ℓ {R}
isLock ℓR ⊢ {R} release ℓ {True}



4

Combining progress about a shared resource
A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.

let r = ref 0 in

let l = newlock () in

(fork)

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

(join)

acquire l;

assert (!r = 2)

Let us prove safety with the lock rules. Reminder of the lock Hoare triples:

{R} newlock () {ℓ.□isLock ℓR}
isLock ℓR ⊢ {True} acquire ℓ {R}
isLock ℓR ⊢ {R} release ℓ {True}



4

Combining progress about a shared resource
A common situation: several threads work on a shared resource protected by a mutex. Once
they are done, the resource must satisfy some property accordingly.

let r = ref 0 in

let l = newlock () in

(fork)

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

(join)

acquire l;

assert (!r = 2)

Let us prove safety with the lock rules. Reminder of the lock Hoare triples:

{R} newlock () {ℓ.□isLock ℓR}
isLock ℓR ⊢ {True} acquire ℓ {R}
isLock ℓR ⊢ {R} release ℓ {True}



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0}

so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,

{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R}

(persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)

{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}

acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}

r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}

release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}

acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2)

impossible: R is clever but invariant



5

How a proof with invariants would go

{}
let r = ref 0 in

{r 7→ 0} so for some clever R ,
{R}
let l = newlock ()

{isLock l R} (persistent)
{} {}
acquire l; acquire l

{R} {R}
r := !r + 1; r := !r + 1;

{R} {R}
release l release l

{} {}
acquire l;

{R}
assert (!r = 2) impossible: R is clever but invariant



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic

▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread

▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



6

What are invariants lacking?

At high-level the program has two interleavings:

let r = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1; || r := !r + 1;

release l || release l

acquire l;

assert (!r = 2)

0

1 1

2

thread 1 thread 2

thread 2 thread 1

A proof would need need to reflect this somehow.

▶ some notion of state embedded into the separation logic
▶ splitting (and combining) states into parts for each thread
▶ all possibles orders: combining is commutative and associative (same reason as for ∗)



7

One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let r1 = ref 0 in

let r2 = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1 || r := !r + 1

r1 := !r1 + 1 || r2 := !r2 + 1

release l || release l

acquire l;

assert (!r = 2);

release l

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.

Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

isLock l (∃n∃n1∃n2 r 7→ n ∗ r1
1/27→ n1 ∗ r2

1/27→ n2 ∗ n = n1 + n2)

but: 1) not modular, 2) changes the code 3) a special case of ghost



7

One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let r1 = ref 0 in

let r2 = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1 || r := !r + 1

r1 := !r1 + 1 || r2 := !r2 + 1

release l || release l

acquire l;

assert (!r = 2);

release l

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.

Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

isLock l (∃n∃n1∃n2 r 7→ n ∗ r1
1/27→ n1 ∗ r2

1/27→ n2 ∗ n = n1 + n2)

but: 1) not modular, 2) changes the code 3) a special case of ghost



7

One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let r1 = ref 0 in

let r2 = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1 || r := !r + 1

r1 := !r1 + 1 || r2 := !r2 + 1

release l || release l

acquire l;

assert (!r = 2);

release l

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.

Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

isLock l (∃n∃n1∃n2 r 7→ n ∗ r1
1/27→ n1 ∗ r2

1/27→ n2 ∗ n = n1 + n2)

but: 1) not modular, 2) changes the code 3) a special case of ghost



7

One way to add state: auxiliary variables
We could change the program: /

let r = ref 0 in

let r1 = ref 0 in

let r2 = ref 0 in

let l = newlock () in

acquire l; || acquire l;

r := !r + 1 || r := !r + 1

r1 := !r1 + 1 || r2 := !r2 + 1

release l || release l

acquire l;

assert (!r = 2);

release l

Invariant: “the lock owns r and it is the sum of r1 and r2, which are shared”.

Doable by ‘splitting’ r1 and r2: fractional permissions (Boyland, 2003):

isLock l (∃n∃n1∃n2 r 7→ n ∗ r1
1/27→ n1 ∗ r2

1/27→ n2 ∗ n = n1 + n2)

but: 1) not modular, 2) changes the code 3) a special case of ghost



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0}

, find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }

let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }

{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }

acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }

{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }

acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }

{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2

Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



8

Desiderata for a proof with ghost state
let r = ref 0 in

{r 7→ 0} , find R, A , A′ s.t.:
{R ∗ A ∗ A′ }
let l = newlock ()

{isLock l R ∗ A ∗ A′ }
{ A } { A′ }
acquire l; acquire l

r := !r + 1; r := !r + 1

release l; release l

{ B } { B ′ }
{ B ∗ B ′ }
acquire l;

{R ∗ B ∗ B ′ }
{r 7→ 2}
assert (!r = 2)

Ghost updates/triples needed:
1. r 7→ 0⇛ R ∗ A ∗ A′

2. {R ∗ A } r := !r + 1 {R ∗ B }

3. {R ∗ A′ } r := !r + 1 {R ∗ B ′ }

4. R ∗ B ′ ∗ B ⇛ r 7→ 2
Both write to r so r goes in R . Let’s try:

R = ∃n r 7→ n ∗ P(n)

for some clever P .



9

Constraint #1: analysis

R = ∃n r 7→ n ∗ P(n)

Trying to prove the first constraint, derivation-style:

...
True ⇛ P(0) ∗ A ∗ A′

r 7→ 0 ⇛ r 7→ 0 ∗ P(0) ∗ A ∗ A′ frame

r 7→ 0 ⇛ ∃n r 7→ n ∗ P(n) ∗ A ∗ A′ exists-intro



10

Constraint #2 and #3

R = ∃n r 7→ n ∗ P(n)

...
P(n) ∗ A ⇛ P(n + 1) ∗ B

r 7→ n + 1 ∗ P(n) ∗ A ⇛ r 7→ n + 1 ∗ P(n + 1) ∗ B
frame

r 7→ n + 1 ∗ P(n) ∗ A ⇛ ∃n′ r 7→ n′ ∗ P(n′) ∗ B
exists-right

{r 7→ n ∗ P(n) ∗ A } r := !r + 1 {∃n′ r 7→ n′ ∗ P(n′) ∗ B }
incr+seq

{R ∗ A } r := !r + 1 {R ∗ B }
exists-left

{ A } acquire r; r := !r + 1; release r { B }
acquire+seq+release



11

Constraint #4

Now to conclude the program:

...
P(n) ∗ B ∗ B ′ ⇛ n = 2

r 7→ n ∗ P(n) ∗ B ∗ B ′ ⇛ r 7→ n ∗ n = 2
frame

r 7→ n ∗ P(n) ∗ B ∗ B ′ ⇛ r 7→ 2
conseq

R ∗ B ∗ B ′ ⇛ r 7→ 2
exists-intro



12

Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′

ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B

ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2

???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′



12

Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′

ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B

ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2

???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′



12

Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′ ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B

ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2

???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′



12

Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′ ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′ ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2

???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′



12

Ghost updates needed for our example
Purely in terms of ghost, our constraints are, for all n,

True ⇛ P(0) ∗ A ∗ A′ ghost allocation

P(n) ∗ A ⇛ P(n + 1) ∗ B ghost update

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′ ghost update

P(n) ∗ B ∗ B ′ ⇒ n = 2 ???

0

1 1

2

thread 1 thread 2

thread 2 thread 1

P(0) ∗ A ∗ A′

P(1) ∗ B ∗ A′ P(1) ∗ A ∗ B ′

P(2) ∗ B ∗ B ′



13

Step back

What is ghost state?



14

Demonic (∀) and angelic (∃) non-determinism
Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:

(e, σ, g)

(e′, σ′, g)

(e′, σ′, g ′)

(e′′′, σ′′′, g ′) ...

∀

∃

(e′, σ′, g ′′)

∀

∀

(e′′, σ′′, g)

(e′′, σ′′, g ′′′)

∀

∃

(e′′, σ′′, g ′′′′)

∀

Visible in the definition of wp, e.g. when e is not a value wp e ϕ ≜

...∀σ S(σ) −∗ |⇛...∀e ′∀σ′ (e, σ) → (e ′, σ′) −∗ |⇛ S(σ′) ∗ wp e ′ ϕ

where |⇛ contains an existential: J|⇛PK(a) ≜ ...∃b...JPK(b)



14

Demonic (∀) and angelic (∃) non-determinism
Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:

(e, σ, g)

(e′, σ′, g)

(e′, σ′, g ′)

(e′′′, σ′′′, g ′) ...

∀

∃

(e′, σ′, g ′′)

∀

∀

(e′′, σ′′, g)

(e′′, σ′′, g ′′′)

∀

∃

(e′′, σ′′, g ′′′′)

∀

Visible in the definition of wp, e.g. when e is not a value wp e ϕ ≜

...∀σ S(σ) −∗ |⇛...∀e ′∀σ′ (e, σ) → (e ′, σ′) −∗ |⇛ S(σ′) ∗ wp e ′ ϕ

where |⇛ contains an existential: J|⇛PK(a) ≜ ...∃b...JPK(b)



14

Demonic (∀) and angelic (∃) non-determinism
Correctness of a non-deterministic program requires correctness for all physical steps, but for
each, we get to choose a ghost update:

(e, σ, g)

(e′, σ′, g)

(e′, σ′, g ′)

(e′′′, σ′′′, g ′) ...

∀

∃

(e′, σ′, g ′′)

∀

∀

(e′′, σ′′, g)

(e′′, σ′′, g ′′′)

∀

∃

(e′′, σ′′, g ′′′′)

∀

Visible in the definition of wp, e.g. when e is not a value wp e ϕ ≜

...∀σ S(σ) −∗ |⇛...∀e ′∀σ′ (e, σ) → (e ′, σ′) −∗ |⇛ S(σ′) ∗ wp e ′ ϕ

where |⇛ contains an existential: J|⇛PK(a) ≜ ...∃b...JPK(b)



15

Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it
▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?



15

Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it

▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?



15

Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it
▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?



15

Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it
▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?



15

Composition, monoids, updates
Associative symmetric composition: our ghost state is a monoid (M, ·) – in fact a semigroup

At any given time:

▶ each thread ti “owns” one element gi ∈ M, called resource
ownership of gi is written gi .

▶ each unopened invariant Ij “owns” a resource hj that satisfies it
▶ the combination g1 · . . . · gn · h1 · . . . · hk is the global resource

The prover performs updates both: gi ⇛ g ′
i and hj ⇛ h′j .

Composition maps to separation g · h = g ∗ h

Updating is all well and good but what can we conclude from g ?

How to escape the ghost box?



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)

or just
gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i )

≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



16

Validity
Idea: pick an invariant on the global resource, validity: valid : M → Prop

valid(g1 · . . . · gn · h1 · . . . · hk) at all times

Follows rely-guarantee-style protocol:

▶ ownership gi provides validity of some global resource:

gi ⇒ ∃gothers ∈ M valid(gi · gothers)
or just

gi ⇒ valid(gi )

▶ an update gi ⇛ g ′
i requires preservation of global validity:

∀g ∈ M valid(gi · g) ⇒ valid(g ′
i · g) valid(gi ) ⇒ valid(g ′

i ) ≜ gi ⇝ g ′
i

gi ⇛ g ′
i

gi ⇝ g ′
i is called a frame-preserving update



17

Designing the appropriate monoid
Smaller subproblems: split P as P(n) = ∃xy Q(x) ∗ Q ′(y) ∗ n = x + y

(Before splitting)

True ⇛ P(0) ∗ A ∗ A′

P(n) ∗ A ⇛ P(n + 1) ∗ B

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

P(n) ∗ B ∗ B ′ ⇒ n = 2

(Subproblem +more steps)

True ⇛ Q(0) ∗ A

Q(0) ∗ A ⇛ Q(1) ∗ B

Q(x) ∗ A ⇒ x = 0

Q(x) ∗ B ⇒ x = 1

(same for A′ , B ′ , Q ′() )

Equivalent goal: find Q(0), Q(1), A, B such that:

▶ Q(1) ∗ A ⇒ False

▶ Q(0) ∗ B ⇒ False
▶ Q(0) · A is “the whole thing”, so that: Q(0) · A⇝ Q(1) · B



17

Designing the appropriate monoid
Smaller subproblems: split P as P(n) = ∃xy Q(x) ∗ Q ′(y) ∗ n = x + y

(Before splitting)

True ⇛ P(0) ∗ A ∗ A′

P(n) ∗ A ⇛ P(n + 1) ∗ B

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

P(n) ∗ B ∗ B ′ ⇒ n = 2

(Subproblem +more steps)

True ⇛ Q(0) ∗ A

Q(0) ∗ A ⇛ Q(1) ∗ B

Q(x) ∗ A ⇒ x = 0

Q(x) ∗ B ⇒ x = 1

(same for A′ , B ′ , Q ′() )

Equivalent goal: find Q(0), Q(1), A, B such that:

▶ Q(1) ∗ A ⇒ False

▶ Q(0) ∗ B ⇒ False
▶ Q(0) · A is “the whole thing”, so that: Q(0) · A⇝ Q(1) · B



17

Designing the appropriate monoid
Smaller subproblems: split P as P(n) = ∃xy Q(x) ∗ Q ′(y) ∗ n = x + y

(Before splitting)

True ⇛ P(0) ∗ A ∗ A′

P(n) ∗ A ⇛ P(n + 1) ∗ B

P(n) ∗ A′ ⇛ P(n + 1) ∗ B ′

P(n) ∗ B ∗ B ′ ⇒ n = 2

(Subproblem +more steps)

True ⇛ Q(0) ∗ A

Q(0) ∗ A ⇛ Q(1) ∗ B

Q(x) ∗ A ⇒ x = 0

Q(x) ∗ B ⇒ x = 1

(same for A′ , B ′ , Q ′() )

Equivalent goal: find Q(0), Q(1), A, B such that:

▶ Q(1) ∗ A ⇒ False

▶ Q(0) ∗ B ⇒ False
▶ Q(0) · A is “the whole thing”, so that: Q(0) · A⇝ Q(1) · B



18

Commutative-monoid-with-validity (Mhalf , ·)

Mhalf ::= full(0) | full(1) | half (0) | half (1) | ×

Operations and validity:

− · − full(x) half (0) half (1) ×
full(y) × × × ×
half (0) × full(0) × ×
half (1) × × full(1) ×

× × × × ×

valid(−) True True True False

Properties of interest (no full(−), no ×):

valid(half (x) · half (y)) ⇒ x = y

half (0) · half (0) ⇝ half (1) · half (1)



18

Commutative-monoid-with-validity (Mhalf , ·)

Mhalf ::= full(0) | full(1) | half (0) | half (1) | ×

Operations and validity:

− · − full(x) half (0) half (1) ×
full(y) × × × ×
half (0) × full(0) × ×
half (1) × × full(1) ×

× × × × ×

valid(−) True True True False

Properties of interest (no full(−), no ×):

valid(half (x) · half (y)) ⇒ x = y

half (0) · half (0) ⇝ half (1) · half (1)



18

Commutative-monoid-with-validity (Mhalf , ·)

Mhalf ::= full(0) | full(1) | half (0) | half (1) | ×

Operations and validity:

− · − full(x) half (0) half (1) ×
full(y) × × × ×
half (0) × full(0) × ×
half (1) × × full(1) ×

× × × × ×

valid(−) True True True False

Properties of interest (no full(−), no ×):

valid(half (x) · half (y)) ⇒ x = y

half (0) · half (0) ⇝ half (1) · half (1)



19

Demo: half_ra.v

Exercise: start_finish.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/half_ra.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/start_finish.v


20

Quiz

Properties we have:

half (x) · half (y) ⇒ x = y

half (0) ∗ half (0) ⇛ half (1) ∗ half (1)

Properties we want:

Q(0) ∗ A ⇛ Q(1) ∗ B

Q ′(0) ∗ A′ ⇛ Q ′(1) ∗ B ′

Q(x) ∗ B ∗ Q ′(y) ∗ B ′ ⇒ x = 1 ∧ y = 1

Can we choose: Q(x) = half (x) , A = half (0) , B = half (1) ?



21

Products

Let us call commutative-monoid-with-validity resource algebra0 (RA)

The product of two RA (A, ·A, validA) and (B, ·B , validB) is defined as
(A× B, ·A×B , validA×B) where

(a, b) ·A×B (a′, b′) ≜ (a ·A a′, b ·B b′)

validA×B((a, b)) ≜ validA(a) ∧ validB(b)

Property: frame-preserving update is pointwise:

a⇝ a′ b ⇝ b′

(a, b)⇝ (a′, b′)



21

Products

Let us call commutative-monoid-with-validity resource algebra0 (RA)

The product of two RA (A, ·A, validA) and (B, ·B , validB) is defined as
(A× B, ·A×B , validA×B) where

(a, b) ·A×B (a′, b′) ≜ (a ·A a′, b ·B b′)

validA×B((a, b)) ≜ validA(a) ∧ validB(b)

Property: frame-preserving update is pointwise:

a⇝ a′ b ⇝ b′

(a, b)⇝ (a′, b′)



21

Products

Let us call commutative-monoid-with-validity resource algebra0 (RA)

The product of two RA A and B is defined as A× B with

(a, b) · (a′, b′) ≜ (a · a′, b · b′)
valid((a, b)) ≜ valid(a) ∧ valid(b)

Property: frame-preserving update is pointwise:

a⇝ a′ b ⇝ b′

(a, b)⇝ (a′, b′)



21

Products

Let us call commutative-monoid-with-validity resource algebra0 (RA)

The product of two RA A and B is defined as A× B with

(a, b) · (a′, b′) ≜ (a · a′, b · b′)
valid((a, b)) ≜ valid(a) ∧ valid(b)

Property: frame-preserving update is pointwise:

a⇝ a′ b ⇝ b′

(a, b)⇝ (a′, b′)



22

Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
− · − None Some(a)

None None Some(a)
Some(b) Some(b) Some(a · b)

valid(−) True valid(a)

Properties of frame-preserving update:

a⇝ b

Some(a)⇝ Some(b) Some(a)⇝ None

In the following we write ϵ for the unit None and a for Some(a)



22

Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
− · − None Some(a)

None None Some(a)
Some(b) Some(b) Some(a · b)

valid(−) True valid(a)

Properties of frame-preserving update:

a⇝ b

Some(a)⇝ Some(b) Some(a)⇝ None

In the following we write ϵ for the unit None and a for Some(a)



22

Option

Option of an RA A, with carrier:

option A := None | Some of A

and operations:
− · − None Some(a)

None None Some(a)
Some(b) Some(b) Some(a · b)

valid(−) True valid(a)

Properties of frame-preserving update:

a⇝ b

Some(a)⇝ Some(b) Some(a)⇝ None

In the following we write ϵ for the unit None and a for Some(a)



23

The algebra needed for the example

Let’s use the RA : option Mhalf × option Mhalf

A = half (0), ϵ A′ = ϵ, half (0)
B = half (1), ϵ B ′ = ϵ, half (1)

Q(x) = half (x), ϵ Q ′(x) = ϵ, half (x)



24

{ full(0), full(0) }

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }

let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}

we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }

{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }

acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}

{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }

{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}

{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}

{r 7→ 2}
assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}

assert (!r = 2)



24

{ full(0), full(0) }
{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) }
let r = ref 0

{ half (0), ϵ ∗ ϵ, half (0) ∗ half (0), half (0) ∗ r 7→ 0}
we choose R = ∃xy r 7→ x + y ∗ half (x), half (y)

let l = newlock ()

{ half (0), ϵ ∗ ϵ, half (0) }

{ half (0), ϵ } { ϵ, half (0) }
... ...

{ half (1), ϵ } { ϵ, half (1) }
{ half (1), ϵ ∗ ϵ, half (1) }
acquire l

{ half (1), ϵ ∗ ϵ, half (1) ∗ R}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) }
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ x + y ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{ half (1), ϵ ∗ ϵ, half (1) ∗ r 7→ 2 ∗ half (x), half (y) ∗ x = 1 ∗ y = 1}
{r 7→ 2}
assert (!r = 2)



25

Zoom on one thread

{ half (0), ϵ }

acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ }

introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and

{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }

incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) }

we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) }

split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ }

∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }

{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }

release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



25

Zoom on one thread

{ half (0), ϵ }
acquire l

{R ∗ half (0), ϵ } introduce x , y
{r 7→ x + y ∗ half (x), half (y) ∗ half (0), ϵ } hence x = 0 and
{r 7→ 0 + y ∗ full(0), half (y) }
incr r

{r 7→ 1 + y ∗ full(0), half (y) } we ⇛ to
{r 7→ 1 + y ∗ full(1), half (y) } split
{r 7→ 1 + y ∗ half (1), half (y) ∗ half (1), ϵ } ∃-intro
{∃xy r 7→ x + y ∗ half (x), half (y) ∗ half (1), ϵ }
{R ∗ half (1), ϵ }
release R

{ half (1), ϵ }



26

Demo: incr2.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/incr2.v


27

Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

▶ handle more threads e.g. (ϵ, ϵ, half (0), ϵ)
▶ continue the rest of the program keeping (full(0), full(0), unrelated)
▶ reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...

Answer: package all of that into one monoid



27

Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

▶ handle more threads e.g. (ϵ, ϵ, half (0), ϵ)
▶ continue the rest of the program keeping (full(0), full(0), unrelated)
▶ reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...

Answer: package all of that into one monoid



27

Modularity?

Fixing the resource algebra once lacks modularity, making it tedious to:

▶ handle more threads e.g. (ϵ, ϵ, half (0), ϵ)
▶ continue the rest of the program keeping (full(0), full(0), unrelated)
▶ reuse a proof, allow custom resource algebras, etc

We need several instances of a given monoid, names for those instances, to allow of several
different monoids, ...

Answer: package all of that into one monoid



28

RA of functions

If M is an RA, then X → M is an RA for any X :

(f · g)(x) ≜ λx .f (x) · g(x) valid(f ) ≜ ∀x .valid(f (x))
f (x)⇝ a

f ⇝ f [x := a]

and so is the set of partial functions X ⇀ M. In case M has no unit, allows to talk about
the singleton partial function:

g
γ
≜ [γ := g ]



28

RA of functions

If M is an RA, then X → M is an RA for any X :

(f · g)(x) ≜ λx .f (x) · g(x) valid(f ) ≜ ∀x .valid(f (x))
f (x)⇝ a

f ⇝ f [x := a]

and so is the set of partial functions X ⇀ M. In case M has no unit, allows to talk about
the singleton partial function:

g
γ
≜ [γ := g ]



29

Frame preservation and allocation
Problem: creating the new ghost resource g

γ
is impossible!

Because [γ := g ] could be a potential frame of itself:

valid(∅ · [γ := g ])
¬valid([γ := g ] · [γ := g ])

∴ ∅ ⇝̸ [γ := g ]

In fact a⇝ b is redefined as a⇝ {b}. More general definition: a⇝ B where B ⊆ M:

a⇝ B ≜ ∀c? ∈ M? valid(a · c?) ⇒ ∃b ∈ B valid(b · c?)

M? ≜ ⊥ ⊎M a · ⊥ ≜ a

We can now allocate if we have infinite possibilities and the rest of the world c? is finite:

valid(g)

∅⇝ {[γ := g ] | γ ∈ N}
valid(g)

True ⇛ ∃γ g
γ

true for N fin
⇀ M but not for N ⇀ M.



29

Frame preservation and allocation
Problem: creating the new ghost resource g

γ
is impossible!

Because [γ := g ] could be a potential frame of itself:

valid(∅ · [γ := g ])
¬valid([γ := g ] · [γ := g ])

∴ ∅ ⇝̸ [γ := g ]

In fact a⇝ b is redefined as a⇝ {b}. More general definition: a⇝ B where B ⊆ M:

a⇝ B ≜ ∀c? ∈ M? valid(a · c?) ⇒ ∃b ∈ B valid(b · c?)

M? ≜ ⊥ ⊎M a · ⊥ ≜ a

We can now allocate if we have infinite possibilities and the rest of the world c? is finite:

valid(g)

∅⇝ {[γ := g ] | γ ∈ N}
valid(g)

True ⇛ ∃γ g
γ

true for N fin
⇀ M but not for N ⇀ M.



29

Frame preservation and allocation
Problem: creating the new ghost resource g

γ
is impossible!

Because [γ := g ] could be a potential frame of itself:

valid(∅ · [γ := g ])
¬valid([γ := g ] · [γ := g ])

∴ ∅ ⇝̸ [γ := g ]

In fact a⇝ b is redefined as a⇝ {b}. More general definition: a⇝ B where B ⊆ M:

a⇝ B ≜ ∀c? ∈ M? valid(a · c?) ⇒ ∃b ∈ B valid(b · c?)

M? ≜ ⊥ ⊎M a · ⊥ ≜ a

We can now allocate if we have infinite possibilities and the rest of the world c? is finite:

valid(g)

∅⇝ {[γ := g ] | γ ∈ N}
valid(g)

True ⇛ ∃γ g
γ

true for N fin
⇀ M but not for N ⇀ M.



29

Frame preservation and allocation
Problem: creating the new ghost resource g

γ
is impossible!

Because [γ := g ] could be a potential frame of itself:

valid(∅ · [γ := g ])
¬valid([γ := g ] · [γ := g ])

∴ ∅ ⇝̸ [γ := g ]

In fact a⇝ b is redefined as a⇝ {b}. More general definition: a⇝ B where B ⊆ M:

a⇝ B ≜ ∀c? ∈ M? valid(a · c?) ⇒ ∃b ∈ B valid(b · c?)

M? ≜ ⊥ ⊎M a · ⊥ ≜ a

We can now allocate if we have infinite possibilities and the rest of the world c? is finite:

valid(g)

∅⇝ {[γ := g ] | γ ∈ N}
valid(g)

True ⇛ ∃γ g
γ

true for N fin
⇀ M but not for N ⇀ M.



30

Several types of RA

The dependent product of finite partial functions to each Mi is an RA:

∏
i∈I

N fin
⇀ Mi g : Mi

γ
≜ λj .

{
[γ := g ] if i = j
∅ otherwise

The Σ of “iProp Σ” does the bookkeeping of saying which i correspond to which Mi .

The command

Context ‘{inG Σ M}

ensures that M is somewhere in the set and

Context ‘{mylibG Σ}

ensures that all of the “M” of mylib are there too.



30

Several types of RA

The dependent product of finite partial functions to each Mi is an RA:

∏
i∈I

N fin
⇀ Mi g : Mi

γ
≜ λj .

{
[γ := g ] if i = j
∅ otherwise

The Σ of “iProp Σ” does the bookkeeping of saying which i correspond to which Mi .

The command

Context ‘{inG Σ M}

ensures that M is somewhere in the set and

Context ‘{mylibG Σ}

ensures that all of the “M” of mylib are there too.



31

Persistent knowledge
How to state that a reference will not change once set?
let check r =

let x = Atomic.get r in

let y = Atomic.get r in

assert (x = 0 || x = y)

let try_set r v =

Atomic.compare_and_set r 0 v

let r = Atomic.make 0

try_set 3 || try_set 5 || try_set 7 || check ()

Specs for get: once the returned value is not 0 then it will never change.

{True} get () {n.n = 0 ∨ n ̸= 0 ∧□ shot(n)
γ}

{ shot(n)
γ} get () {v .v = n}

we also need some resource “pending ” for before shooting.



31

Persistent knowledge
How to state that a reference will not change once set?
let check r =

let x = Atomic.get r in

let y = Atomic.get r in

assert (x = 0 || x = y)

let try_set r v =

Atomic.compare_and_set r 0 v

let r = Atomic.make 0

try_set 3 || try_set 5 || try_set 7 || check ()

Specs for get: once the returned value is not 0 then it will never change.

{True} get () {n.n = 0 ∨ n ̸= 0 ∧□ shot(n)
γ}

{ shot(n)
γ} get () {v .v = n}

we also need some resource “pending ” for before shooting.



32

Resource Algebras
A resource algebra is a resource algebra0 plus a core (Pottier, 2013):

| · | : M → M?

Intuition/axioms/properties:

▶ |a| is a ‘duplicable’ part of a if it exists
▶ if a has no ‘duplicable’ part, then |a| = ⊥

▶ if |a| ≠ ⊥ then a = a · |a| = a · |a| · |a| = ...

▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|
▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
▶ no core for Mhalf : |half (x)| = |full(x)| = |×| = ⊥

The persistent modality □ is defined using | − |:

J□PKρ(a) ≜ JPKρ(|a|)

Intuition: □P is like P ∗ P ∗ P ∗ . . . (like !P in linear logic)



32

Resource Algebras
A resource algebra is a resource algebra0 plus a core (Pottier, 2013):

| · | : M → M?

Intuition/axioms/properties:

▶ |a| is a ‘duplicable’ part of a if it exists
▶ if a has no ‘duplicable’ part, then |a| = ⊥
▶ if |a| ≠ ⊥ then a = a · |a| = a · |a| · |a| = ...

▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|

▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
▶ no core for Mhalf : |half (x)| = |full(x)| = |×| = ⊥

The persistent modality □ is defined using | − |:

J□PKρ(a) ≜ JPKρ(|a|)

Intuition: □P is like P ∗ P ∗ P ∗ . . . (like !P in linear logic)



32

Resource Algebras
A resource algebra is a resource algebra0 plus a core (Pottier, 2013):

| · | : M → M?

Intuition/axioms/properties:

▶ |a| is a ‘duplicable’ part of a if it exists
▶ if a has no ‘duplicable’ part, then |a| = ⊥
▶ if |a| ≠ ⊥ then a = a · |a| = a · |a| · |a| = ...

▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|
▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
▶ no core for Mhalf : |half (x)| = |full(x)| = |×| = ⊥

The persistent modality □ is defined using | − |:

J□PKρ(a) ≜ JPKρ(|a|)

Intuition: □P is like P ∗ P ∗ P ∗ . . . (like !P in linear logic)



32

Resource Algebras
A resource algebra is a resource algebra0 plus a core (Pottier, 2013):

| · | : M → M?

Intuition/axioms/properties:

▶ |a| is a ‘duplicable’ part of a if it exists
▶ if a has no ‘duplicable’ part, then |a| = ⊥
▶ if |a| ≠ ⊥ then a = a · |a| = a · |a| · |a| = ...

▶ if |a| ≠ ⊥ then ||a|| = |a| = |a| · |a|
▶ if there is a unit ϵ then |a| ≠ ⊥ (|a| is at least ϵ)
▶ no core for Mhalf : |half (x)| = |full(x)| = |×| = ⊥

The persistent modality □ is defined using | − |:

J□PKρ(a) ≜ JPKρ(|a|)

Intuition: □P is like P ∗ P ∗ P ∗ . . . (like !P in linear logic)



33

One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m



33

One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m



33

One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m



33

One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m



33

One shot RA

Moneshot := pending | shot(n) | ×

Composition is similar to Mhalf . If m ̸= n:

· pending shot(n) shot(m) ×
pending × × × ×
shot(n) × shot(n) × ×
shot(m) × × shot(m) ×

× × × × ×

valid True True True False

| − | ⊥ shot(n) shot(m) ⊥

Properties:

shot(n) · shot(n) = shot(n) pending ⇝ shot(n) valid(shot(n) · shot(m)) ⇒ n = m



34

Moneshot is derivable from existing RAs
Moneshot has three ingredients:

▶ it has two disjoint components
▶ shot(−) has the agreement property

▶ pending is exclusive i.e. ∀c ¬valid(pending · c) — why is it useful?

anything exclusive ⇝ anything valid

And indeed we can derive it from the corresponding RAs:

Moneshot ≜ Ex(1) + Ag(Z)

where:

▶ Ex(X ) is the exclusive RA over a set X
▶ Ag(X ) is the agreement RA over a set X
▶ M1 + M2 is the sum of two RAs M1 and M2



34

Moneshot is derivable from existing RAs
Moneshot has three ingredients:

▶ it has two disjoint components
▶ shot(−) has the agreement property
▶ pending is exclusive i.e. ∀c ¬valid(pending · c) — why is it useful?

anything exclusive ⇝ anything valid

And indeed we can derive it from the corresponding RAs:

Moneshot ≜ Ex(1) + Ag(Z)

where:

▶ Ex(X ) is the exclusive RA over a set X
▶ Ag(X ) is the agreement RA over a set X
▶ M1 + M2 is the sum of two RAs M1 and M2



34

Moneshot is derivable from existing RAs
Moneshot has three ingredients:

▶ it has two disjoint components
▶ shot(−) has the agreement property
▶ pending is exclusive i.e. ∀c ¬valid(pending · c) — why is it useful?

anything exclusive ⇝ anything valid

And indeed we can derive it from the corresponding RAs:

Moneshot ≜ Ex(1) + Ag(Z)

where:

▶ Ex(X ) is the exclusive RA over a set X
▶ Ag(X ) is the agreement RA over a set X
▶ M1 + M2 is the sum of two RAs M1 and M2



34

Moneshot is derivable from existing RAs
Moneshot has three ingredients:

▶ it has two disjoint components
▶ shot(−) has the agreement property
▶ pending is exclusive i.e. ∀c ¬valid(pending · c) — why is it useful?

anything exclusive ⇝ anything valid

And indeed we can derive it from the corresponding RAs:

Moneshot ≜ Ex(1) + Ag(Z)

where:

▶ Ex(X ) is the exclusive RA over a set X
▶ Ag(X ) is the agreement RA over a set X
▶ M1 + M2 is the sum of two RAs M1 and M2



35

About □

Demo: one_shot.v

Some remarks:

▶ you can recover the reference from the invariant — see one_shot_cancel.v

▶ for ghost ownership the □ modality is not strictly necessary since we can duplicate it by
hand, but it is convenient to have shot(n) in the persistent context

▶ □ is very convenient for consise definitions, such as

P ⇛ Q ≜ □(P −∗ |⇛Q)

{P} e {Q} ≜ □(P −∗ wp e Q)

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot.v
https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/one_shot_cancel.v


36

Authoritative RA
The authoritative RA over an RA M is, wheree a, b ∈ M,

Auth(M) ::= •a | ◦b | •◦(a, b) | ×

Intuition:

▶ •a is the unique global authority, or authoritative view
you need •a to update

▶ ◦b is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions

Main properties:

valid(a · c)
•a · ◦b ⇝ •(a · c) · ◦(b · c)

valid(•a · ◦b) ⇒ b ≼ a



36

Authoritative RA
The authoritative RA over an RA M is, wheree a, b ∈ M,

Auth(M) ::= •a | ◦b | •◦(a, b) | ×

Intuition:

▶ •a is the unique global authority, or authoritative view
you need •a to update

▶ ◦b is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions

Main properties:

valid(a · c)
•a · ◦b ⇝ •(a · c) · ◦(b · c)

valid(•a · ◦b) ⇒ b ≼ a



36

Authoritative RA
The authoritative RA over an RA M is, wheree a, b ∈ M,

Auth(M) ::= •a | ◦b | •◦(a, b) | ×

Intuition:

▶ •a is the unique global authority, or authoritative view
you need •a to update

▶ ◦b is a fragment, or fragmental view
there can be several fragments
use them to record independent contributions

Main properties:

valid(a · c)
•a · ◦b ⇝ •(a · c) · ◦(b · c)

valid(•a · ◦b) ⇒ b ≼ a



37

Authoritative RA

Operations:

· •a ◦b •◦(a, b) ×

•a′ × •◦(a′, b) × ×

◦b′ •◦(a, b′) ◦(b · b′) •◦(a, b · b′) ×

•◦(a′, b′) × •◦(a′, b · b′) × ×

× × × × ×

valid(−) valid(a) valid(b) valid(a) ∧ b ≼ a False

| − | ⊥ ◦b ◦b ⊥

we could almost derive it by Auth(M) = Excl(M)? ×M but we need valid(•◦(a, b)) to
also require b ≼ a ≜ ∃c a = b · c .



38

Example usage of Auth(M)

Using Auth((N,+)) we can prove that 4 threads doing:

eincr ≜ acquire l; incr r; release l

will increment r at least four times. Under the lock invariant R = ∃n r 7→ n ∗ •n γ
:

isLock l R ⊢ { ◦0 γ} eincr { ◦1 γ}
isLock l R ⊢ { ◦0 γ} (eincr || eincr || eincr || eincr ) { ◦4 γ}

R ⊢ { ◦4 γ} !r {n.n ≥ 4}

Indeed with •n γ ∗ ◦4 γ
we can only prove 4 ≼(N,+) n which means 4 ≤ n

Intuitively ◦4 does not prevent “other” ◦1’s from contributing to •n



38

Example usage of Auth(M)

Using Auth((N,+)) we can prove that 4 threads doing:

eincr ≜ acquire l; incr r; release l

will increment r at least four times. Under the lock invariant R = ∃n r 7→ n ∗ •n γ
:

isLock l R ⊢ { ◦0 γ} eincr { ◦1 γ}
isLock l R ⊢ { ◦0 γ} (eincr || eincr || eincr || eincr ) { ◦4 γ}

R ⊢ { ◦4 γ} !r {n.n ≥ 4}

Indeed with •n γ ∗ ◦4 γ
we can only prove 4 ≼(N,+) n which means 4 ≤ n

Intuitively ◦4 does not prevent “other” ◦1’s from contributing to •n



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}

{ ◦n γ} incr () { ◦(n + 1)
γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



39

Checking counter monotonicity using Auth(Nmax)

let r = Atomic.make 0

let read () = Atomic.get r

let incr () =

Atomic.fetch_and_add r 1

let check () =

let x = read () in

let y = read () in

assert (y >= x)

let rec loop f () =

f (); loop f ()

let () =

let open Domain in

let d1 = spawn (loop incr) in

let d2 = spawn (loop check) in

join d1; join d2

Let Nmax = (N,max)

Invariant and specs:

∃n r 7→ n ∗ •(n : Nmax)
γ

{ ◦n γ} read () {k .k ≥ n ∗ ◦k γ}
{ ◦n γ} incr () { ◦(n + 1)

γ}

Proof of check:

{ ◦0 γ} let x = read ()

{x ≥ 0 ∗ ◦x γ} let y = read ()

{y ≥ x ∗ ◦y γ} assert (y >= x)



40

Checking counter monotonicity using Auth(Nmax)

Demo: monotonic_counter.v

https://gitlab.inria.fr/fpottier/iris-intro/-/blob/main/src/monotonic_counter.v


41

Fractional RA

Definition:

Frac ≜ (0, 1]∩Q | × valid(q) ≜ q ̸= × |q| ≜ ⊥ q ·q′ ≜
{

q + q′ if q + q′ ≤ 1
× otherwise

Easier definition:

Frac ≜ Q+∗ valid(q) ≜ q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

You still have to be a bit careful, here is a wrong definition:

Frac ≜ Q valid(q) ≜ 0 < q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

For once, updates do not matter, still, you can wonder when q ⇝ q′ holds



41

Fractional RA

Definition:

Frac ≜ (0, 1]∩Q | × valid(q) ≜ q ̸= × |q| ≜ ⊥ q ·q′ ≜
{

q + q′ if q + q′ ≤ 1
× otherwise

Easier definition:

Frac ≜ Q+∗ valid(q) ≜ q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

You still have to be a bit careful, here is a wrong definition:

Frac ≜ Q valid(q) ≜ 0 < q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

For once, updates do not matter, still, you can wonder when q ⇝ q′ holds



41

Fractional RA

Definition:

Frac ≜ (0, 1]∩Q | × valid(q) ≜ q ̸= × |q| ≜ ⊥ q ·q′ ≜
{

q + q′ if q + q′ ≤ 1
× otherwise

Easier definition:

Frac ≜ Q+∗ valid(q) ≜ q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

You still have to be a bit careful, here is a wrong definition:

Frac ≜ Q valid(q) ≜ 0 < q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

For once, updates do not matter, still, you can wonder when q ⇝ q′ holds



41

Fractional RA

Definition:

Frac ≜ (0, 1]∩Q | × valid(q) ≜ q ̸= × |q| ≜ ⊥ q ·q′ ≜
{

q + q′ if q + q′ ≤ 1
× otherwise

Easier definition:

Frac ≜ Q+∗ valid(q) ≜ q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

You still have to be a bit careful, here is a wrong definition:

Frac ≜ Q valid(q) ≜ 0 < q ≤ 1 |q| ≜ ⊥ q · q′ ≜ q + q′

For once, updates do not matter, still, you can wonder when q ⇝ q′ holds



42

Authoritative fractional RA

Derived construction: FracAuth(M) ≜ Auth((Frac ×M)?) with notations:

•a ≜ •(1, a) ◦q b ≜ ◦(q, b)

Properties:

◦q+q′(b · b′) ≡ ◦qb · ◦q′b′
valid(a · c)

•a · ◦qb ⇝ •(a · c) · ◦q(b · c)
valid(•a · ◦qb) ⇒ b ≼ a

valid(•a · ◦1b) ⇒ b = a
valid(a′)

•a · ◦1b ⇝ •a′ · ◦1a
′



43

Example usage of FracAuth(M)

Using FracAuth((N,+)) we can finally prove modularly that k threads doing:

eincr ≜ acquire l; incr r; release l

will increment r at exactly k times. Under the lock invariant R = ∃n r 7→ n ∗ •n γ
:

True ⇛ ∃γ •0 γ ∗ ◦1/40
γ ∗ ◦1/40

γ ∗ ◦1/40
γ ∗ ◦1/40

γ

isLock l R ⊢ { ◦1/40
γ} eincr { ◦1/41

γ}
isLock l R ⊢ { ◦10

γ} (eincr || eincr || eincr || eincr ) { ◦14
γ}

R ⊢ { ◦14
γ} !r {n.n = 4}



44

Other common uses of Auth

: heaps

When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val))

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]



44

Other common uses of Auth

: heaps

When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val)) ℓ 7→ v ≜ ◦[ℓ := v ]

γheap

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]



44

Other common uses of Auth : heaps
When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val)) ℓ 7→ v ≜ ◦[ℓ := v ]

γheap

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]



44

Other common uses of Auth : heaps
When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val)) ℓ 7→ v ≜ ◦[ℓ := v ]

γheap

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]



44

Other common uses of Auth : heaps
When Loc and Val are any set (not necessarily RAs), this is a useful RA:

Auth(Loc fin
⇀ Excl(Val)) ℓ 7→ v ≜ ◦[ℓ := v ]

γheap

ℓ 7→ v is derived; threads and invariants own the fragmental view; the wp ties the
authoritative view •σ γheap to the actual physical steps.

For fractional permissions, uses View(A,B) which generalizes Auth(A) to two algebras with
a extra binary validity holds : A → B → Prop:

View(Loc → Val , Loc → Frac × Val) ℓ 7→q v ≜ ◦[ℓ := (q, v)]
γheap

Singleton type class mechanism not to write γheap

Class gen_heapGpreS (L V : Type) (Sigma : gFunctors) {Countable L} := {

gen_heapGpreS_heap :: ghost_mapG Sigma L V [...]

Class gen_heapGS (L V : Type) (Sigma : gFunctors) {Countable L} := GenHeapGS {

gen_heap_inG :: gen_heapGpreS L V Sigma;

gen_heap_name : gname; [...]



45

Other common uses of Auth

: invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp)))

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp))) P

ι
≜ ◦[ι := agree(P)]

γinv

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above.

.. But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(iProp))) P

ι
≜ ◦[ι := agree(P)]

γinv

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



45

Other common uses of Auth : invariants

Another very interesting resource algebra is:

Auth(N fin
⇀ Agree(▶iProp))) P

ι
≜ ◦[ι := agree(next P)]

γinv

so invariants are “just” ghost state, known as named propositions, for example allocating a
new invariant is a ghost update updating the map above... But now:

▶ iProp is a predicate over some F (iProp), Σ is a set of functors,
▶ we have a domain equation for iProp
▶ we need step indexing, ordered families of equivalences, RA become “camera”,
▶ the functors in Σ are now contractive, ...



46

Manipulating invariants — from Iris from the ground up



46

Manipulating invariants — from Iris from the ground up



46

Manipulating invariants — from Iris from the ground up



46

Manipulating invariants — from Iris from the ground up



47

Brace yourself

Full definition of world satisfaction, invariants, view shifts, wp



48

Excerpt from Iris from the ground up



49

Excerpt from Iris from the ground up



50



51

Variants/instances of Iris



52

Relaxed memory

▶ Invariants such as lock 7→ 0 ∨ lock 7→ 1 ∗ ∃n r 7→ n
ι
only make sense if there is an

instantaneous view of the memory, which is not true in relaxed memory
▶ for now, axiomatic memory models do not fit Iris, but view-based operational memory

models (for e.g. for release-acquire synchronisation) can be made to fit
▶ single-location invariants ℓ | I which can provide knowledge + special mechanisms

(escrows) to transmit non-persistent resources



53

Linearizability

Under sequential consistency linearizability can be reasoned about using logically atomic
triples:

⟨P⟩ e ⟨Q⟩

means: “at the linearization point in the execution of e, the resources in P are atomically
consumed to produce the resources in Q”



54

Liveness?

▶ Transfinite Iris: ordinal step indices for the existential property and termination

Standard Iris Transfinite Iris

if ⊨ ∃x P then for some x ⊨ P × ✓
▷(∃x P) ⇔ ∃x ▷P ✓ ×

▷(P ∗ Q) ⇔ ▷P ∗ ▷Q ✓ ×

▶ Nola: “no later” at invariant opening, replaced with restricted formulas

Iris
{P ∗ ▷R} e {Q ∗ ▷R}
{P ∗ R

ι} e {Q}

Nola
[P ∗ JF K] e [Q ∗ JF K] F ∈ Fml

[P ∗ F ] e [Q]



55

Variants of Iris

▶ complexity analysis: resources can be time/space credits/receipts,
▶ type soundness, e.g. rustbelt
▶ relational separation logics
▶ session types, channels, distributed systems, cryptographic reasoning
▶ probabilities, non-determinism
▶ relaxed memory



56

Exercise

(1) design a resource algebra such that:

valid(Start) Start ⇝ Finish Persistent( Finish
γ
)

(2) design a resource algebra such that:

valid(r(0)) ∀n ∈ N r(n) ≡ t(n) · r(n + 1) ¬valid(t(n) · t(n))

motivation: allocate once |⇛∃γ r(0)
γ

to generate an infinitely many tokens t(i)
γ
, each

will be used to transfer resources through single-location invariants at iteration i of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21

https://gitlab.mpi-sws.org/iris/tutorial-popl21


56

Exercise

(1) design a resource algebra such that:

valid(Start) Start ⇝ Finish Persistent( Finish
γ
)

(2) design a resource algebra such that:

valid(r(0)) ∀n ∈ N r(n) ≡ t(n) · r(n + 1) ¬valid(t(n) · t(n))

motivation: allocate once |⇛∃γ r(0)
γ

to generate an infinitely many tokens t(i)
γ
, each

will be used to transfer resources through single-location invariants at iteration i of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21

https://gitlab.mpi-sws.org/iris/tutorial-popl21


56

Exercise

(1) design a resource algebra such that:

valid(Start) Start ⇝ Finish Persistent( Finish
γ
)

(2) design a resource algebra such that:

valid(r(0)) ∀n ∈ N r(n) ≡ t(n) · r(n + 1) ¬valid(t(n) · t(n))

motivation: allocate once |⇛∃γ r(0)
γ

to generate an infinitely many tokens t(i)
γ
, each

will be used to transfer resources through single-location invariants at iteration i of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21

https://gitlab.mpi-sws.org/iris/tutorial-popl21


56

Exercise

(1) design a resource algebra such that:

valid(Start) Start ⇝ Finish Persistent( Finish
γ
)

(2) design a resource algebra such that:

valid(r(0)) ∀n ∈ N r(n) ≡ t(n) · r(n + 1) ¬valid(t(n) · t(n))

motivation: allocate once |⇛∃γ r(0)
γ

to generate an infinitely many tokens t(i)
γ
, each

will be used to transfer resources through single-location invariants at iteration i of a loop.

(3) Steal a reference back from an invariant? See one_shot_cancel.v — in general how to
make cancellable invariants?

(4) For using Iris, five exercises here: https://gitlab.mpi-sws.org/iris/tutorial-popl21

https://gitlab.mpi-sws.org/iris/tutorial-popl21

