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Pourguoi OCaml sur une calculatrice : materiel, contraintes et motivations

e Programmation de plus en plus présente dans les programmes

scolaires
e Lycée: SNT, NSI, Mathématiques...
e Classes préparatoires : filiere MP2I, cours d'informatique...
e Universités : aussi

e Fourniture scolaire omniprésente en filiere scientifique : la calculatrice
"lycée”
e Mode examen
e Calculs numériques avancés, calculs matriciels, résolutions d'équations...
e Mini-Python : écriture, modification et exécution de programmes, saisie
clavier et affichage des résultats
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Pourguoi OCaml sur une calculatrice : Matériel, contraintes et motivations
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e EcranIPS (LCD) de 320 x 240 pixels
e a @ e Clavier alphanumeérique

Statistics Distributions  Equations

e Processeur ARMv7 a 216 MHz
ak R G o e 256 Kio de RAM

o) G G &) (B) @) e 8 Miode Flash

G G e Systeme d'exploitation open source : Epsilon

OO e Systéme de gestion de fichiers (lié¢ a
EIEDIeSICe) l'application préinstallée Python)

e Installation d'applications personnalisées (. nwa)
Figure 1— Une calculatrice NumWorks
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OMiicroB et son portage

e OMicroB : une machine virtuelle (VM)
e implémentée en C - portable sur microcontréleurs (AVR, PIC32 par exemple)
e peut exécuter du bytecode produit par le compilateur OCam|

-
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bytecode| _[bytecode
OCaml OCaml xc32-gcce
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Figure 2 — Chaine de compilation d'OMicroB
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OMiicroB et son portage

e Ajout de NumWorks comme nouvelle cible d'OMicroB
e Adaptation du Makefile et du configure
e Configuration matérielle (device_config)

e Bibliothéque standard
e Acces écran, clavier, couleurs
e Acces au stockage fichiers
e (Gestion entrées-sorties

S Résultats
e Compilation de OCaml en une application .nwa native
e [Exécution directe sur la calculatrice
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Demonstration du jeu de la vie sur NumWorks

class world width height =
object(self)
val mutable tcell =
val mutable gen = ©
method draw() =
Screen.clear ();
for 1 = 0 to (width-1) do
for j = @ to (height-1) do
draw cell 1 j tcell.(1).(3)
done
done
method getCell(i,j) = tcell.(1).(3)
method setCell(i,j,c) = tcell.(1).(]) <- c
method getCells = tcell

Array.make matrix width height false
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Demonstration du jeu de la vie sur NumWorks

let draw cursor cx
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.f1ll rect
Screen.f1ll rect
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* 10) 4 2;

* 10) 2 4;

(cy * 10) 4 2;

(cy * 10) 2 4;
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Demonstration du jeu de la vie sur NumWorks

let edit w =
let rec loop c¢x cy =

witdraw() ;

draw_cursor cx cy;

Screen.print "Edition" © 0;

match Keyboard.wait key press () with
| Key left -> loop ((cx + width - 1) mod width) cy
| Key up -> loop cx ((cy + height - 1) mod height)
| Key right -> loop ((cx + 1) mod width) cy
| Key down -> loop cx ((cy + 1) mod height)
| Key ok -> wi#setCell(cx,cy, (not wi#getCells.(cx).(cy))); loop cx cy
| Key exe -> w
| _ -> loop cx cy
in loop (width/2) (height/2);;
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Demonstration du jeu de la vie sur NumWorks

S 1s
o |

Makefile README.md life.ml
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https://docs.google.com/file/d/1SliwLYWIWQG_oFfPmE37FbPhd3N8Diau/preview

Impléementation d'un top-level

e Probleme principal : embarquer un lexer, un parser, un typer, et un
compilateur bytecode

S Tres lourd!

e Possibilité : embarquer directement ocamlc/ocamlrun sur la calculatrice
via OMicroB

e Solution envisagée (et utilisée) : portage de l'interprete 4.13 de Camlboot

via OMicroB
e interprete dAST
e écriten OCaml (dont Menhir)
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Impléementation d'un top-level

Isolement des modules utiles : Parsetree, Lexer, Parser...
e Réecritures de modules comme Lazy car incompatibles avec OMicroB

Imports de modules spécifiques a CamiBoot : Eval et toutes ses
dépendances

e Suppression des modules incompatibles avec OMicroB, comme Format
Implémentation de la boucle REPL

e Utilisation de Parsetree, Lexer, Parser et Eval

e Environnement persistant

e Possibilite de charger des fichiers

e (Gestion et affichage d'erreurs
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Impléementation d'un top-level

Figure 3 — Schéma des dépendances de l'interpréteur de Camlboot
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Demonstration du top-level

module Keyboard = struct

external wait_key press : unit -> int = "numworks_keyboard wait_key press”
external scan : unit -> unit = "numworks_ keyboard scan"
external key down : int -> bool = "numworks_keyboard key down"

end

module Color = struct
type t = int

let make r g b =
(r 1s1 11) + ((2 * g) 1s15) +b

let black : int = make @ 0 ©
let red : int = make 31 0 0

end

module Screen = struct

external clear : unit -> unit = "numworks_ screen_clear"

external print : string -> int -> int -> unit = "numworks_screen print"

external fill rect : Color.t -> int -> int -> int -> int -> unit = "numworks screen fill rect”
end
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Demonstration du top-level

let fill rect ¢ x y w h = Screen.fill rect c x (y + 10) w h

let draw cell x y alive
if alive then fill rect Color.black (x*10) (y*10) 10 10

type world = {
width: int;
height: int;
tcell: bool Array.t Array.t;
¥

let mk world width height = {
width = width;
height = height;
tcell = Array.make matrix width height false;
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Demonstration du top-level

let edit w =
try
let x = ref (width/2) and y = ref (height/2) in
while true do
draw w;
draw_cursor Ix ly;
Screen.print "Edition\n" © 0;
match Keyboard.wait key press () with
| @ (* left *) -> x := (Ix + width - 1) mod width
| 1 (¥ up *) ->y := (ly + height - 1) mod height
| 2 (* down *) ->y := (ly + 1) mod height
| 3 (* right *) -> x := (Ix + 1) mod width
| 4 (* ok *) -> set cell w Ix ly (not (get cell w Ix ly))
| 45 (* exe *) -> raise Fin
| =2 ()
done
with Fin -> ();;
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Demonstration du top-level

83 Settings X Ubuntu
! $ 1s
Makefile OMicroB-Camlboot-1.0.c OMicroB-Camlboot-1.0.hex ocaml.py pervasives.ml
OMicroB-Camlboot-1.0.nwa pervasives.mli
$ omicrob -list-devices
numworks
3 N
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https://docs.google.com/file/d/1z64enddAMUHctWMzHOYpd7k9eOGAoGgN/preview

Limitations et enjeux pedagogiques

e Typage dynamique pour le top-level
e lent
e Contrainte mémoire

e On pourrait potentiellement stocker dans la flash ce qui est “fixe" comme I'AST
de la librairie standard

e Enjeux pédagogiques:
e EXxpérimentation autonome et immediate, encourager I'exploration du langage
e Introduction a la compilation
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