Programmer en OCaml pour et sur les calculatrices

Numworks

Laura Ly Lilian Besson
Basile Pesin Emmanuel Chailloux

28 janvier 2026

JFLA 2026 OCaml sur calculatrices 28 janvier 2026

0 Pourquoi OCaml sur une calculatrice : matériel, contraintes et motivations
OMicroB et son portage

Implémentation d'un top-level

@ © O

Limitations et enjeux pedagogiques

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Pourguoi OCaml sur une calculatrice : materiel, contraintes et motivations

e Programmation de plus en plus présente dans les programmes

scolaires
e Lycée: SNT, NSI, Mathématiques...
e Classes préparatoires : filiere MP2I, cours d'informatique...
e Universités : aussi

e Fourniture scolaire omniprésente en filiere scientifique : la calculatrice
"lycée”
e Mode examen
e Calculs numériques avancés, calculs matriciels, résolutions d'équations...
e Mini-Python : écriture, modification et exécution de programmes, saisie
clavier et affichage des résultats

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Pourguoi OCaml sur une calculatrice : Matériel, contraintes et motivations

NNNNNNNN

e EcranIPS (LCD) de 320 x 240 pixels
e a @ e Clavier alphanumeérique

Statistics Distributions Equations

e Processeur ARMv7 a 216 MHz
ak R G o e 256 Kio de RAM

o) G G &) (B) @) e 8 Miode Flash

G G e Systeme d'exploitation open source : Epsilon

OO e Systéme de gestion de fichiers (lié¢ a
EIEDIeSICe) l'application préinstallée Python)

e Installation d'applications personnalisées (. nwa)
Figure 1— Une calculatrice NumWorks

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

OMiicroB et son portage

e OMicroB : une machine virtuelle (VM)
e implémentée en C - portable sur microcontréleurs (AVR, PIC32 par exemple)
e peut exécuter du bytecode produit par le compilateur OCam|

-

v
ocamlc bc2c gee
avr-gcc~ ¥ ‘
bytecode| _[bytecode
OCaml OCaml xc32-gcce
ocamlclean arm-gcc

~
~

interpréteur TA
+ runtime

Figure 2 — Chaine de compilation d'OMicroB

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

OMiicroB et son portage

e Ajout de NumWorks comme nouvelle cible d'OMicroB
e Adaptation du Makefile et du configure
e Configuration matérielle (device_config)

e Bibliothéque standard
e Acces écran, clavier, couleurs
e Acces au stockage fichiers
e (Gestion entrées-sorties

S Résultats
e Compilation de OCaml en une application .nwa native
e [Exécution directe sur la calculatrice

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Demonstration du jeu de la vie sur NumWorks

class world width height =
object(self)
val mutable tcell =
val mutable gen = ©
method draw() =
Screen.clear ();
for 1 = 0 to (width-1) do
for j = @ to (height-1) do
draw cell 1 j tcell.(1).(3)
done
done
method getCell(i,j) = tcell.(1).(3)
method setCell(i,j,c) = tcell.(1).(]) <- c
method getCells = tcell

Array.make matrix width height false

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Demonstration du jeu de la vie sur NumWorks

let draw cursor cx
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.fill rect
Screen.f1ll rect
Screen.f1ll rect

JFLA 2026

cy

Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.

red
red
red
red
red
red
red
red

(cx
(cx
(cx
(cx
(cx
(cx
(cx
(cx

M Me e e e e e

10) (cy
10) (cy
10 + 6)
10 + 8)
10) (cy
10) (cy
10 + 6)
10 + 8)

OCaml sur calculatrice

* 10) 4 2;

* 10) 2 4;

(cy * 10) 4 2;

(cy * 10) 2 4;

* 10 + 8) 4 2;

* 10 + 6) 2 4;

(cy * 10 + 8) 4 2;
ey > 18-+ 6) 2 45:;

28 janvier 2026

Demonstration du jeu de la vie sur NumWorks

let edit w =
let rec loop c¢x cy =

witdraw() ;

draw_cursor cx cy;

Screen.print "Edition" © 0;

match Keyboard.wait key press () with
| Key left -> loop ((cx + width - 1) mod width) cy
| Key up -> loop cx ((cy + height - 1) mod height)
| Key right -> loop ((cx + 1) mod width) cy
| Key down -> loop cx ((cy + 1) mod height)
| Key ok -> wi#setCell(cx,cy, (not wi#getCells.(cx).(cy))); loop cx cy
| Key exe -> w
| _ -> loop cx cy
in loop (width/2) (height/2);;

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Demonstration du jeu de la vie sur NumWorks

S 1s
o |

Makefile README.md life.ml

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

https://docs.google.com/file/d/1SliwLYWIWQG_oFfPmE37FbPhd3N8Diau/preview

Impléementation d'un top-level

e Probleme principal : embarquer un lexer, un parser, un typer, et un
compilateur bytecode

S Tres lourd!

e Possibilité : embarquer directement ocamlc/ocamlrun sur la calculatrice
via OMicroB

e Solution envisagée (et utilisée) : portage de l'interprete 4.13 de Camlboot

via OMicroB
e interprete dAST
e écriten OCaml (dont Menhir)

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Impléementation d'un top-level

Isolement des modules utiles : Parsetree, Lexer, Parser...
e Réecritures de modules comme Lazy car incompatibles avec OMicroB

Imports de modules spécifiques a CamiBoot : Eval et toutes ses
dépendances

e Suppression des modules incompatibles avec OMicroB, comme Format
Implémentation de la boucle REPL

e Utilisation de Parsetree, Lexer, Parser et Eval

e Environnement persistant

e Possibilite de charger des fichiers

e (Gestion et affichage d'erreurs

JFLA 2026 OCaml sur calculatrice 28 janvier 2026

Impléementation d'un top-level

Figure 3 — Schéma des dépendances de l'interpréteur de Camlboot

JFLA 2026 OCaml sur calculatrice 28 janvier 2026 13/18

Demonstration du top-level

module Keyboard = struct

external wait_key press : unit -> int = "numworks_keyboard wait_key press”
external scan : unit -> unit = "numworks_ keyboard scan"
external key down : int -> bool = "numworks_keyboard key down"

end

module Color = struct
type t = int

let make r g b =
(r 1s1 11) + ((2 * g) 1s15) +b

let black : int = make @ 0 ©
let red : int = make 31 0 0

end

module Screen = struct

external clear : unit -> unit = "numworks_ screen_clear"

external print : string -> int -> int -> unit = "numworks_screen print"

external fill rect : Color.t -> int -> int -> int -> int -> unit = "numworks screen fill rect”
end

JFLA 2026 OCaml sur calculatrice 28 janvier 2026 14/18

Demonstration du top-level

let fill rect ¢ x y w h = Screen.fill rect c x (y + 10) w h

let draw cell x y alive
if alive then fill rect Color.black (x*10) (y*10) 10 10

type world = {
width: int;
height: int;
tcell: bool Array.t Array.t;
¥

let mk world width height = {
width = width;
height = height;
tcell = Array.make matrix width height false;

JFLA 2026 OCaml sur calculatrice 28 janvier 2026 15/18

Demonstration du top-level

let edit w =
try
let x = ref (width/2) and y = ref (height/2) in
while true do
draw w;
draw_cursor Ix ly;
Screen.print "Edition\n" © 0;
match Keyboard.wait key press () with
| @ (* left *) -> x := (Ix + width - 1) mod width
| 1 (¥ up *) ->y := (ly + height - 1) mod height
| 2 (* down *) ->y := (ly + 1) mod height
| 3 (* right *) -> x := (Ix + 1) mod width
| 4 (* ok *) -> set cell w Ix ly (not (get cell w Ix ly))
| 45 (* exe *) -> raise Fin
| =2 ()
done
with Fin -> ();;

16/18

JFLA 2026 OCaml sur calculatrice

28 janvier 2026

Demonstration du top-level

83 Settings X Ubuntu
! $ 1s
Makefile OMicroB-Camlboot-1.0.c OMicroB-Camlboot-1.0.hex ocaml.py pervasives.ml
OMicroB-Camlboot-1.0.nwa pervasives.mli
$ omicrob -list-devices
numworks
3 N

JFLA 2026 OCaml sur calculatrice 28 janvier 2026 1718

https://docs.google.com/file/d/1z64enddAMUHctWMzHOYpd7k9eOGAoGgN/preview

Limitations et enjeux pedagogiques

e Typage dynamique pour le top-level
e lent
e Contrainte mémoire

e On pourrait potentiellement stocker dans la flash ce qui est “fixe" comme I'AST
de la librairie standard

e Enjeux pédagogiques:
e EXxpérimentation autonome et immediate, encourager I'exploration du langage
e Introduction a la compilation

JFLA 2026 OCaml sur calculatrice 28 janvier 2026 18/18

