
Verifying “Simple” Persistent Catenable Deques
Journées Francophones des Langages Applicatifs 2026

Juliette Ponsonnet1 François Pottier2

1ENS de Lyon

2Inria Paris

9 Pluviôse an CCXXXIV

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 1 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 1 / 27

Kaplan, Okasaki and Tarjan’s Deques

• catenable deque
• self adjusting data structure
• persistent (old copies cannot be

invalidated)
• use references internally
• not so simple
• all operations in amortised O(1)

Figure: Кот, не очередь

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 2 / 27

An Unusual Algorithm

Kaplan, Okasaki, Tarjan (2000)
our method requires an extension of the concept of memoization: we allow
any expression to be replaced by an equivalent expression

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 3 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:

• Changing one line of code, make
the structure concurrent

• Formalise concurrent “stable
references”

• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof
• Changing one line of code, fix

the invariants
• Prove O(1) sequential amortised

complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent

• Formalise concurrent “stable
references”

• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof
• Changing one line of code, fix

the invariants
• Prove O(1) sequential amortised

complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”

• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof
• Changing one line of code, fix

the invariants
• Prove O(1) sequential amortised

complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”
• Prove concurrent correctness

• Formalise sequential “stable
references”

• Point out a flaw in the original
proof

• Changing one line of code, fix
the invariants

• Prove O(1) sequential amortised
complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”
• Prove concurrent correctness
• Formalise sequential “stable

references”

• Point out a flaw in the original
proof

• Changing one line of code, fix
the invariants

• Prove O(1) sequential amortised
complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”
• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof

• Changing one line of code, fix
the invariants

• Prove O(1) sequential amortised
complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”
• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof
• Changing one line of code, fix

the invariants

• Prove O(1) sequential amortised
complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

A Surprising Journey

What we set out to do:
• Understand and

formalise the extension
of memoisation

• Prove the correctness of
the data structure

• Prove O(1) amortised
time complexity

What we ended up doing:
• Changing one line of code, make

the structure concurrent
• Formalise concurrent “stable

references”
• Prove concurrent correctness
• Formalise sequential “stable

references”
• Point out a flaw in the original

proof
• Changing one line of code, fix

the invariants
• Prove O(1) sequential amortised

complexity

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 4 / 27

OCaml Interface1

type ’a deque
val empty : ’a deque
val push : ’a -> ’a deque -> ’a deque
val inject : ’a deque -> ’a -> ’a deque
val pop : ’a deque -> ’a * ’a deque
val eject : ’a deque -> ’a deque * ’a
val concat : ’a deque -> ’a deque -> ’a deque

1opam install kot
Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 5 / 27

Structure of a Deque

deque

Five-tuple

prefix left middle right suffix

deque of triples deque of triples

first child last

Triple

optional ref

Key:
Teal = Buffer
Mauve = Five-tuple
Peach = Triple
Lavender = deque

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 6 / 27

OCaml Type Definition

type ’a deque =
’a nonempty_deque option

and ’a nonempty_deque =
’a five_tuple ref

and ’a five_tuple = {
prefix : ’a buffer ;
left : ’a triple deque;
middle : ’a buffer ;
right : ’a triple deque;
suffix : ’a buffer ;

}
and ’a triple = {

first : ’a buffer ;
child : ’a triple deque;
last : ’a buffer ;

}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 7 / 27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix ; middle ; _ } = f in
B. is_empty middle || B. length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted ; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then

naive_pop f
else

let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted ; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 8 / 27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix ; middle ; _ } = f in
B. is_empty middle || B. length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted ; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then

naive_pop f
else

let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted ; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 8 / 27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix ; middle ; _ } = f in
B. is_empty middle || B. length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted ; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then

naive_pop f
else

let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted ; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 8 / 27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix ; middle ; _ } = f in
B. is_empty middle || B. length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted ; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then

naive_pop f
else

let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted ; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 8 / 27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix ; middle ; _ } = f in
B. is_empty middle || B. length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted ; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then

naive_pop f
else

let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted ; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 8 / 27

Foreshadowing

and pop_triple
: type a. a triple nonempty_deque

-> a triple * a triple deque
= fun r ->

let f = !r in
let t = inspect_first f in
let { first; last; _ } = t in
(* The (repaired) mysterious condition : *)
if not (B. is_empty last) || B. has_length_3 first then

(* [naive_pop_safe f] is not necessarily true here! *)
naive_pop f

else
pop_nonempty r

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 9 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 9 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val → list Val → iProp

Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs} push x d (∃d ′) d ′ {Deque d ′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)} pop d (∃d ′) (x , d ′) {Deque d ′ xs}

Deque-Concat
{Deque d xs ∗ Deque d ′ xs ′}

concat d d ′

(∃d ′′) d ′′ {Deque d ′′ (xs ++ xs ′)}
This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val → list Val → iProp
Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs} push x d (∃d ′) d ′ {Deque d ′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)} pop d (∃d ′) (x , d ′) {Deque d ′ xs}

Deque-Concat
{Deque d xs ∗ Deque d ′ xs ′}

concat d d ′

(∃d ′′) d ′′ {Deque d ′′ (xs ++ xs ′)}
This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val → list Val → iProp
Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs} push x d (∃d ′) d ′ {Deque d ′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)} pop d (∃d ′) (x , d ′) {Deque d ′ xs}

Deque-Concat
{Deque d xs ∗ Deque d ′ xs ′}

concat d d ′

(∃d ′′) d ′′ {Deque d ′′ (xs ++ xs ′)}
This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val → list Val → iProp
Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs} push x d (∃d ′) d ′ {Deque d ′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)} pop d (∃d ′) (x , d ′) {Deque d ′ xs}

Deque-Concat
{Deque d xs ∗ Deque d ′ xs ′}

concat d d ′

(∃d ′′) d ′′ {Deque d ′′ (xs ++ xs ′)}

This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val → list Val → iProp
Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs} push x d (∃d ′) d ′ {Deque d ′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)} pop d (∃d ′) (x , d ′) {Deque d ′ xs}

Deque-Concat
{Deque d xs ∗ Deque d ′ xs ′}

concat d d ′

(∃d ′′) d ′′ {Deque d ′′ (xs ++ xs ′)}
This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 10 / 27

Designing the Deque Predicate

How to encode this reference to make
the deque predicate persistent?

Recall:
We allow ft to be overwritten with a
value ft ′ provided ft and ft ′ are
equivalent in some sense.

and ’a nonempty_deque =
’a five_tuple ref

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 11 / 27

Designing the Deque Predicate

How to encode this reference to make
the deque predicate persistent? Recall:
We allow ft to be overwritten with a
value ft ′ provided ft and ft ′ are
equivalent in some sense.

and ’a nonempty_deque =
’a five_tuple ref

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 11 / 27

Stable References – Intuition

Standard Iris

ℓ 7→ v

too precise, exclusive ownership

• Using points-to, restricting writes with a property
• Reference to a property, value unknown

“Stable Reference” library

ℓ Z⇒ ϕ

invariant and shareable (everyone agrees on ϕ)

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 12 / 27

(Concurrent) Stable References (CSRef)

CSRef-Persist
persistent(ℓ Z⇒ ϕ)

CSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ Z⇒ ϕ}

CSRef-Read
persistent(ϕ) −∗
{ℓ Z⇒ ϕ} !ℓ (∃v) v {ϕ v}

CSRef-Write
{ℓ Z⇒ ϕ ∗ ϕ v} ℓ := v () {}

We also propose a sequential interface (SSRef), discussed later.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 13 / 27

(Concurrent) Stable References (CSRef)

CSRef-Persist
persistent(ℓ Z⇒ ϕ)

CSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ Z⇒ ϕ}

CSRef-Read
persistent(ϕ) −∗
{ℓ Z⇒ ϕ} !ℓ (∃v) v {ϕ v}

CSRef-Write
{ℓ Z⇒ ϕ ∗ ϕ v} ℓ := v () {}

We also propose a sequential interface (SSRef), discussed later.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 13 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 13 / 27

Defining the Deque Predicate

Deque d xs ≜ ⌜d = None ∧ xs = []⌝ ∨
∃ℓ. ⌜d = Some(ℓ)⌝ ∗

ℓ Z⇒ (λft. fiveTuple n ft xs)

fiveTuple n ft xs ≜ ∃ p, l , m, r , s, xsp , xssl , xsm, xssr , xss .

⌜d = (p, l , m, r , s)∧
config5(|xsp |, |xssl |, |xsm|, |xssr |, |xsss |)∧
xs = xsp ++ join(xssl) ++ xsm ++ join(xssr) ++ xss⌝ ∗
buffer p xssp ∗
dequeOfTriples l xsl ∗
buffer m xsm ∗
dequeOfTriples r xssr ∗
buffer s xss

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 14 / 27

Proof Excerpt – Creating Stable References

Initial Goal
"Hb" : buffer (1) [x] b
--------------------------------------□
. . .
--------------------------------------∗
WP ref (bempty , InjLV #() , bempty , InjLV #() , b)

{{ v, WP InjR v {{ v, ψ v }} }}

wp_apply (csref_alloc (fiveTuple [x])) as "%ℓ #Hℓ".

Subgoals
1. Prove the initial value is correct:

"Hb" : buffer 1 [x] b
--------------------------------------□
fiveTuple [x] (bempty , InjLV #() , bempty , InjLV #() , b)

2. Continue the proof with the new reference ℓ:
"Hℓ" : ℓ Z⇒ fiveTuple [x]
--------------------------------------□
. . .
--------------------------------------∗
WP InjR #ℓ {{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 15 / 27

Proof Excerpt – Creating Stable References

Initial Goal
"Hb" : buffer (1) [x] b
--------------------------------------□
. . .
--------------------------------------∗
WP ref (bempty , InjLV #() , bempty , InjLV #() , b)

{{ v, WP InjR v {{ v, ψ v }} }}

wp_apply (csref_alloc (fiveTuple [x])) as "%ℓ #Hℓ".

Subgoals
1. Prove the initial value is correct:

"Hb" : buffer 1 [x] b
--------------------------------------□
fiveTuple [x] (bempty , InjLV #() , bempty , InjLV #() , b)

2. Continue the proof with the new reference ℓ:
"Hℓ" : ℓ Z⇒ fiveTuple [x]
--------------------------------------□
. . .
--------------------------------------∗
WP InjR #ℓ {{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 15 / 27

Proof Excerpt – Creating Stable References

Initial Goal
"Hb" : buffer (1) [x] b
--------------------------------------□
. . .
--------------------------------------∗
WP ref (bempty , InjLV #() , bempty , InjLV #() , b)

{{ v, WP InjR v {{ v, ψ v }} }}

wp_apply (csref_alloc (fiveTuple [x])) as "%ℓ #Hℓ".

Subgoals
1. Prove the initial value is correct:

"Hb" : buffer 1 [x] b
--------------------------------------□
fiveTuple [x] (bempty , InjLV #() , bempty , InjLV #() , b)

2. Continue the proof with the new reference ℓ:
"Hℓ" : ℓ Z⇒ fiveTuple [x]
--------------------------------------□
. . .
--------------------------------------∗
WP InjR #ℓ {{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 15 / 27

Proving the Specification

• KOT did not provide a correctness proof
• Correctness of the operations is relatively self-evident
• Showing the invariants are upheld requires a more careful look

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 16 / 27

Pop is not “Simple” at all

Recall:
and pop_triple

: type a. a triple nonempty_deque
-> a triple * a triple deque

= fun r ->
let f = !r in
let t = inspect_first f in
let { first; last; _ } = t in
(* The (repaired) mysterious condition : *)
if not (B. is_empty last) || B. has_length_3 first then

(* [naive_pop_safe f] is not necessarily true here! *)
naive_pop f

else
pop_nonempty r

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 17 / 27

Specifying pop_triple – Naïve-Pop

NaivePop-Safe
{safeFiveTuple n ft ([x] ++ xs)}

naive pop ft
(∃d) (x , d) {deque n d xs}

NaivePop-Unsafe
{fiveTuple n ft ([x] ++ xs)}

naive pop ft

(∃d) (x , d)

∀y ,
wp

push y d
(∃d ′) d ′ {

deque n d ′ ([y] ++ xs)
}



Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 18 / 27

Specifying pop_triple – Naïve-Pop

NaivePop-Safe
{safeFiveTuple n ft ([x] ++ xs)}

naive pop ft
(∃d) (x , d) {deque n d xs}

NaivePop-Unsafe
{fiveTuple n ft ([x] ++ xs)}

naive pop ft

(∃d) (x , d)

∀y ,
wp

push y d
(∃d ′) d ′ {

deque n d ′ ([y] ++ xs)
}



Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 18 / 27

Specifying pop_triple – The Mysterious Condition

The “mysterious condition” seen before is used to decide which path is
executed in pop_triple. Depending on whether the triple popped is
“special”, the post-condition is different.

PopTriple
{dequeOfTriples n d ([t] ++ ts)}

pop triple d

(∃d ′) (t, d ′)


nonSpecialTriple n xs t ∗ deque n d ′ ts∨

specialTriple n xs t ∗
∀t′, wp push t′ d ′ (∃d ′′) d ′′ {deque n d ′′ ([t′] ++ ts)}



Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 19 / 27

Specifying pop_triple – The Mysterious Condition

The “mysterious condition” seen before is used to decide which path is
executed in pop_triple. Depending on whether the triple popped is
“special”, the post-condition is different.

PopTriple
{dequeOfTriples n d ([t] ++ ts)}

pop triple d

(∃d ′) (t, d ′)


nonSpecialTriple n xs t ∗ deque n d ′ ts∨

specialTriple n xs t ∗
∀t′, wp push t′ d ′ (∃d ′′) d ′′ {deque n d ′′ ([t′] ++ ts)}



Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 19 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 19 / 27

New Specification

persistent(Deque$ π d xs) Deque$ π empty []{
Deque$ π d xs ∗ Eπ ∗ $7

}
push x d

(∃d ′) d ′
{

Deque$ π d ′ ([x] ++ xs) ∗ Eπ
}

{
Deque$ π d ([x] ++ xs) ∗ Eπ ∗ $171

}
pop d

(∃d ′) (x , d ′)
{

Deque$ π d ′ xs ∗ Eπ
}

{
Deque$ π d xs ∗ Deque$ π d ′ xs′ ∗ Eπ ∗ $57

}
concat d d ′

(∃d ′′) d ′′
{

Deque$ π d ′′ (xs ++ xs′) ∗ Eπ
}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 20 / 27

New Deque Predicate

Deque$ π d xs ≜ deque$ π 0 d xs

deque$ π n d xs ≜ ⌜d = None ∧ xs = []⌝ ∨
∃ ℓ. ⌜d = Some(ℓ)⌝ ∗
ℓ

π.nZ=⇒ (λft. fiveTuple$ π n ft xs)

fiveTuple$ π n ft xs ≜ ∃ p, l ,m, r , s, xsp, xss l , xsm, xssr , xss .

$potential(|xsp|, |xss |) ∗
. . .

Potential in the structure: the natural amortised analysis technique in Iris$.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 21 / 27

Potential is not Shareable

The concurrent stable references do not work with this definition.

CSRef-Read
persistent(ϕ) −∗
{ℓ Z⇒ ϕ} !ℓ (∃v) v {ϕ v}

fiveTuple is not persistent, as it contains credits. We need be able to
borrow them and put them back later.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 22 / 27

The Need For Two Interfaces

Concurrent Sequential

Stable Reference

Correctness Proof Complexity Proof

CSRef SSRef

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 23 / 27

Sequential Stable References (SSRef)

SSRef-New-Pool
⇛ ∃π. Eπ.0

SSRef-Persist
persistent(ℓ π.nZ=⇒ ϕ)

SSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ π.nZ=⇒ ϕ}

SSRef-Read
(∀v . ϕ v −∗ ϕ v ∗ ψ v) −∗
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ψ v ∗ Eπ.n}

SSRef-Read-Write {
ℓ

π.nZ=⇒ ϕ ∗ Eπ.n
}

!ℓ
(∃v) v

{
ϕ v ∗ Eπ.n+1 ∗ ∀v ′. ϕ v ′ −∗ Eπ.n+1 −∗ wp ℓ := v ′ () {Eπ.n}

}

This interface is not more general than CSRef: it forbids concurrent access.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 24 / 27

Sequential Stable References (SSRef)

SSRef-New-Pool
⇛ ∃π. Eπ.0

SSRef-Persist
persistent(ℓ π.nZ=⇒ ϕ)

SSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ π.nZ=⇒ ϕ}

SSRef-Read
(∀v . ϕ v −∗ ϕ v ∗ ψ v) −∗
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ψ v ∗ Eπ.n}

SSRef-Read-Write {
ℓ

π.nZ=⇒ ϕ ∗ Eπ.n
}

!ℓ
(∃v) v

{
ϕ v ∗ Eπ.n+1 ∗ ∀v ′. ϕ v ′ −∗ Eπ.n+1 −∗ wp ℓ := v ′ () {Eπ.n}

}

This interface is not more general than CSRef: it forbids concurrent access.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 24 / 27

Sequential Stable References (SSRef)

SSRef-New-Pool
⇛ ∃π. Eπ.0

SSRef-Persist
persistent(ℓ π.nZ=⇒ ϕ)

SSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ π.nZ=⇒ ϕ}

SSRef-Read
(∀v . ϕ v −∗ ϕ v ∗ ψ v) −∗
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ψ v ∗ Eπ.n}

SSRef-Read-Write {
ℓ

π.nZ=⇒ ϕ ∗ Eπ.n
}

!ℓ
(∃v) v

{
ϕ v ∗ Eπ.n+1 ∗ ∀v ′. ϕ v ′ −∗ Eπ.n+1 −∗ wp ℓ := v ′ () {Eπ.n}

}

This interface is not more general than CSRef: it forbids concurrent access.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 24 / 27

Sequential Stable References (SSRef)

SSRef-New-Pool
⇛ ∃π. Eπ.0

SSRef-Persist
persistent(ℓ π.nZ=⇒ ϕ)

SSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ π.nZ=⇒ ϕ}

SSRef-Read
(∀v . ϕ v −∗ ϕ v ∗ ψ v) −∗
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ψ v ∗ Eπ.n}

SSRef-Read-Write {
ℓ

π.nZ=⇒ ϕ ∗ Eπ.n
}

!ℓ
(∃v) v

{
ϕ v ∗ Eπ.n+1 ∗ ∀v ′. ϕ v ′ −∗ Eπ.n+1 −∗ wp ℓ := v ′ () {Eπ.n}

}

This interface is not more general than CSRef: it forbids concurrent access.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 24 / 27

Proof Excerpt – Temporarily Breaking Invariants

Initial Goal
"Hℓ" : ℓ Z⇒{π, depth } fiveTuple π n xs
--------------------------------------□
" Token " : Token π depth
--------------------------------------∗
WP let: "f" := ! #ℓ in

[...]
#ℓ <- "r";; naive_pop "r"

{{ v, ψ v }}

wp_apply (ssref_read_write with "[Hℓ Token]") as "%ft (Token & Hft & DONE)".

Subgoals
1. Provide the token and the reference (iFrame).
2. Continue the proof:

ft : val
"Hft" : fiveTuple π n xs ft
" Token " : Token π (depth + 1)
"DONE" : ∀t′ , fiveTuple π n xs t’ −∗ Token π (S depth)

−∗ WP (#ℓ← t ’) {{ _, Token π depth }}
--------------------------------------∗
WP [...]

#ℓ <- "r";; naive_pop "r"
{{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 25 / 27

Proof Excerpt – Temporarily Breaking Invariants

Initial Goal
"Hℓ" : ℓ Z⇒{π, depth } fiveTuple π n xs
--------------------------------------□
" Token " : Token π depth
--------------------------------------∗
WP let: "f" := ! #ℓ in

[...]
#ℓ <- "r";; naive_pop "r"

{{ v, ψ v }}

wp_apply (ssref_read_write with "[Hℓ Token]") as "%ft (Token & Hft & DONE)".

Subgoals
1. Provide the token and the reference (iFrame).
2. Continue the proof:

ft : val
"Hft" : fiveTuple π n xs ft
" Token " : Token π (depth + 1)
"DONE" : ∀t′ , fiveTuple π n xs t’ −∗ Token π (S depth)

−∗ WP (#ℓ← t ’) {{ _, Token π depth }}
--------------------------------------∗
WP [...]

#ℓ <- "r";; naive_pop "r"
{{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 25 / 27

Proof Excerpt – Temporarily Breaking Invariants

Initial Goal
"Hℓ" : ℓ Z⇒{π, depth } fiveTuple π n xs
--------------------------------------□
" Token " : Token π depth
--------------------------------------∗
WP let: "f" := ! #ℓ in

[...]
#ℓ <- "r";; naive_pop "r"

{{ v, ψ v }}

wp_apply (ssref_read_write with "[Hℓ Token]") as "%ft (Token & Hft & DONE)".

Subgoals
1. Provide the token and the reference (iFrame).
2. Continue the proof:

ft : val
"Hft" : fiveTuple π n xs ft
" Token " : Token π (depth + 1)
"DONE" : ∀t′ , fiveTuple π n xs t’ −∗ Token π (S depth)

−∗ WP (#ℓ← t ’) {{ _, Token π depth }}
--------------------------------------∗
WP [...]

#ℓ <- "r";; naive_pop "r"
{{ v, ψ v }}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 25 / 27

Where the Original Proof Breaks

and pop_triple
: type a. a triple nonempty_deque

-> a triple * a triple deque
= fun r ->

let f = !r in
let t = inspect_first f in
let { first ; child; last } = t in
(* The (old) mysterious condition : *)
if not (is_empty child) || B. has_length_3 first then
(* The (repaired) mysterious condition : *)
if not (B. is_empty last) || B. has_length_3 first then

naive_pop f
else

pop_nonempty r

The old one breaks potential invariants down the line in pop_nonempty in
one single possible configuration of t. We have checked that this case is
feasible.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 26 / 27

You are here

1 Introduction

2 The KOT Data Structure

3 Specification

4 Stable References

5 Correctness Proof

6 Time Complexity: Statement and Proof

7 Conclusion

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 26 / 27

Conclusion

Summary of Achievements
• Applied the structure to a concurrent setting.
• Concurrent correctness and O(1) amortised sequential complexity.
• Fixed a flaw in KOT’s proof: thanks Rocq!

Key Contribution: Stable References
• We introduced Stable References, a novel abstraction for reasoning

about shared memory cells supporting restricted updates.
• We developed two distinct interfaces with different capabilities:

• CSRef for fully concurrent read/writes, requires persistent properties.
• SSRef for any property (e.g time credits), forbids concurrent access.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

Кошки

Figure: Philosophers’ Problem Figure: High Potential Cat

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

Tokens and Non-Atomic Invariants

Here is the (simplified) API for non-atomic invariants:

NAInv-New-Pool
⇛0 ∃π. Eπ.0

NAInv-New-Inv
▷P ⇛n □NaInvπ.n(P)

NAInv-Acc
NaInvπ.n(P) ⊢ Eπ.n ∝n (▷P ∗ Eπ.n+1)

Where P ∝n Q means we can get Q from P then recover P from Q2.

2also does view-shifting into the next namespace
Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

Time Credits

tick cost ∈ {0, 1}

Time-Zero
$0 ⊣⊢ emp

Time-Combine
$(n + m) ⊣⊢ $n ∗ $m

Tick-Spec
{$ tick cost} tick() () {emp}

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

OCaml → Tests & Proofs

OCaml Testing
• Monolith to identify issues.
• Confirmed KOT error

feasibility.

HeapLang for Proof
• Manual translation from

OCaml.
• Some recent tools propose

automation.

Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

Sequential Specification For pop_triple

PopTriple
{dequeOfTriples$ π n d ([t] ++ ts) ∗ Eπ.n ∗ $171}

pop triple d

(∃d ′) (t, d ′)

Eπ.n ∗


nonSpecialTriple π n xst ∗ deque$ π n d ′ ts∨

specialTriple π n xst ∗ $(171 − 4) ∗
∀t′, wp push t′ d ′ (∃d ′′) d ′′ {deque$ π n d ′′ ([t′] ++ ts)}




Juliette Ponsonnet François Pottier ENS de Lyon, INRIA Cambium 9 Pluviôse 234 27 / 27

	Introduction
	The KOT Data Structure
	Specification
	Stable References
	Correctness Proof
	Time Complexity: Statement and Proof
	Conclusion
	More Slides Just In Case

