Verifying “Simple” Persistent Catenable Deques
Journées Francophones des Langages Applicatifs 2026

Juliette Ponsonnet! Francois Pottier?

LENS de Lyon

2Inria Paris

9 Pluviose an CCXXXIV

———— a— V4
——— - —— e
- . ——

ENS DE LYON W

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234 1 /27

You are here

@ Introduction

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 1 /27

Kaplan, Okasaki and Tarjan's Deques

® catenable deque
® self adjusting data structure

® persistent (old copies cannot be
invalidated)

® use references internally
® not so simple

e all operations in amortised O(1)

Figure: Kot, me ouepenn

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234 2 /27

An Unusual Algorithm

our method requires an extension of the concept of memoization: we allow
any expression to be replaced by an equivalent expression

Juliette Ponsonnet

Francois Pottier

ENS de Lyon, INRIA Cambium

DA
9 Pluvibse 234 3 /27

A Surprising Journey

What we ended up doing:

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium

9 Pluvibse 234 4 /27

A Surprising Journey

What we ended up doing:

® Changing one line of code, make
the structure concurrent

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium

9 Pluvibse 234 4 /27

A Surprising Journey

What we ended up doing:

® Changing one line of code, make
the structure concurrent

What we set out to do: ® Formalise concurrent “stable

® Understand and references

formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 4 /27

A Surprising Journey

What we ended up doing:

® Changing one line of code, make
the structure concurrent

What we set out to do: ® Formalise concurrent “stable

® Understand and references

formalise the extension
of memoisation

® Prove concurrent correctness

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 4 /27

A Surprising Journey

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

What we ended up doing:

Changing one line of code, make

the structure concurrent

Formalise concurrent “stable
references”

Prove concurrent correctness

Formalise sequential “stable
references”

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234

4 /271

A Surprising Journey

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier

ENS de Lyon, INRIA Cambium

What we ended up doing:

Changing one line of code, make
the structure concurrent

Formalise concurrent “stable
references”

Prove concurrent correctness

Formalise sequential “stable
references”

Point out a flaw in the original
proof

9 Pluvibse 234 4 /27

A Surprising Journey

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier

ENS de Lyon, INRIA Cambium

What we ended up doing:

Changing one line of code, make
the structure concurrent

Formalise concurrent “stable
references”

Prove concurrent correctness

Formalise sequential “stable
references”

Point out a flaw in the original
proof

Changing one line of code, fix
the invariants

9 Pluvibse 234 4 /27

A Surprising Journey

What we set out to do:

® Understand and
formalise the extension
of memoisation

® Prove the correctness of
the data structure

® Prove O(1) amortised
time complexity

Juliette Ponsonnet Francois Pottier

ENS de Lyon, INRIA Cambium

What we ended up doing:

Changing one line of code, make
the structure concurrent

Formalise concurrent “stable
references”

Prove concurrent correctness

Formalise sequential “stable
references”

Point out a flaw in the original
proof

Changing one line of code, fix
the invariants

Prove O(1) sequential amortised
complexity

9 Pluvibse 234 4 /27

You are here

© The KOT Data Structure

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 4 /27

OCaml Interfacel!

type ’a deque

val empty ’a
val push ’a
val inject: ’a
val pop ’a
val eject ’a
val concat: ’a

deque
-> ’a
deque
deque
deque
deque

Lopam install kot

Juliette Ponsonnet Francois Pottier

ENS de Lyon, INRIA Cambium

deque
-> Ja
->)a
-> ’a
->)a

->
->

’a deque
’a deque
* ’a deque
deque * ’a

deque -> ’a deque

9 Pluviése 234 5 /27

Structure of a Deque

(deque)

-
A 4

"""Tab'ifonm ref

Five-tuple

prefix (left

\\ \ -) middle ‘\ %riight / suffix

deque of triples

deque of triples

T Key:
. Triple Teal = Buffer
‘4‘ 7777777777777777777777) Mauve = Five-tuple
! P — 1 Peach = Triple
3 ‘\F!lll,d//‘ 3 Lavender = deque

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234

6 /27

OCaml Type Definition

type ’a deque =

’a nonempty_deque option
and ’a nonempty_deque =

’a five_tuple ref
and ’a five_tuple = {

prefix : ’a buffer;
left : ’a triple deque;
middle : ’a buffer;
right : ’a triple deque;
suffix : ’a buffer;

b

and ’a triple = {
first : ’a buffer;
child : ’a triple deque;
last : ’a buffer;

b

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234 7 /27

Pop is not so “Simple”

Juliette Ponsonnet

Francois Pottier

ENS de Lyon, INRIA Cambium

9 Pluvibse 234 8 /27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix; middle; _ } = f in
B.is_empty middle || B.length prefix > 3

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 8 /27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix; middle; _ } = f in
B.is_empty middle || B.length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(x omitted; just 7 lines *)

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 8 /27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix; middle; _ } = f in
B.is_empty middle || B.length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(x omitted; just 7 lines *)

N

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r -3
let f = !'r in
if naive_pop_safe f then
naive_pop f
else
let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 8 /27

Pop is not so “Simple”

let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix; middle; _ } = f in
B.is_empty middle || B.length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(x omitted; just 7 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r -
let f = !'r in
if naive_pop_safe f then
naive_pop f
else
let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(x omitted; about 100 lines; uses [pop_triple] *)

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 8 /27

N
>

Foreshadowing

and pop_triple
type a. a triple nonempty_deque
-> a triple * a triple deque

= fun r ->
let £ = !r in
let t = inspect_first f im
let { first; last; _ } = t in
(¥ The (repaired) mysterious condition: *)
if not (B.is_empty last) || B.has_length_3 first then

(¥ [naive_pop_safe f] is not necessarily true here!)
naive_pop f

else
pop_nonempty T

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 9 / 27

You are here

© Specification

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 9 / 27

Specification

Deque d xs : d is a deque and represents the list xs

Deque : Val — list Val — iProp

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

DEQUE-PERSIST
Deque : Val — list Val — iProp persistent(Deque d xs)

DEQUE-EMPTY
Deque empty |]

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

DEQUE-PERSIST

Deque : Val — list Val — iProp persistent(Deque d xs)
DEQUE-EMPTY DEQUE-PuUSH
Deque empty |] {Deque d xs} push x d (3d") d’ {Deque d’ ([x] ++ xs)}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

DEQUE-PERSIST

Deque : Val — list Val — iProp persistent(Deque d xs)
DEQUE-EMPTY DEQUE-PuUSH
Deque empty |] {Deque d xs} push x d (3d") d’ {Deque d’ ([x] ++ xs)}
DEQUE-PoP

{Deque d ([x] ++ xs)} pop d (3d’) (x,d") {Deque d' xs}

DEQUE-CONCAT
{Deque d xs * Deque d’ xs'}
concat d d’
(3d") d" {Deque d" (xs ++ xs')}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

Specification

Deque d xs : d is a deque and represents the list xs

DEQUE-PERSIST

Deque : Val — list Val — iProp persistent(Deque d xs)
DEQUE-EMPTY DEQUE-PuUSH
Deque empty |] {Deque d xs} push x d (3d") d’ {Deque d’ ([x] ++ xs)}
DEQUE-PoP

{Deque d ([x] ++ xs)} pop d (3d’) (x,d") {Deque d' xs}

DEQUE-CONCAT
{Deque d xs * Deque d’ xs'}
concat d d’
(3d") d" {Deque d" (xs ++ xs')}

This specification makes deques impossible to invalidate, concurrent and shareable.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

You are here

@ Stable References

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 10 / 27

Designing the Deque Predicate

How to encode this reference to make
the deque predicate persistent?

and ’a nonempty_deque =
’a five_tuple ref

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 11 / 27

Designing the Deque Predicate

How to encode this reference to make

the deque predicate persistent? Recall:

We allow ft to be overwritten with a , B
and ’a nonempty_deque =

value ft' provided ft and ft' are a five_tuple ref

equivalent in some sense.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 11 / 27

Stable References — Intuition

{— v

too precise, exclusive ownership

= Using points-to, restricting writes with a property

= Reference to a property, value unknown

L= ¢

invariant and shareable (everyone agrees on ¢)

o «F = = T 9Dace

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 12 / 27

(Concurrent) Stable References (CSRef)

CSREF-PERSIST CSREF-ALLOC
persistent({ = ¢) {p v} ref v (I)L{l= ¢}
CSREF-READ

persistent(¢) — CSREF-WRITE

{eo@)vigyy Crexovit=vil

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 13 / 27

(Concurrent) Stable References (CSRef)

CSREF-PERSIST CSREF-ALLOC
persistent({ = ¢) {p v} ref v (I)L{l= ¢}
CSREF-READ

persistent(¢) — CSREF-WRITE

{eo@)vigyy Crexovit=vil

We also propose a sequential interface (SSRef), discussed later.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 13 / 27

You are here

© Correctness Proof

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 13 / 27

Defining the Deque Predicate

Deque d xs = "d = None A xs = [|7 V
3¢. "d = Some(¢) *

L= (Mft. fiveTuple n ft xs)

fiveTuple n ft xs & 3 p, I, m,r, S, XSp, XSS|, XSm, XSS, XSs .
“d=(p,l,m,r,s)A
configs(|xsp|, |xssi|, |xsm|, |xssr|, | xsss|)A
xs = xsp ++ join(xss;) ++ xsm ++ join(xss;) ++ xss ' *
buffer p xssp *
dequeOfTriples | xs; *
buffer m xspm, *
dequeOfTriples r xss, *
buffer s xss

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 14 / 27

nHp"

Proof Excerpt — Creating Stable References

buffer (1) [x] b

[m]
______________________________________ o
WP ref (bempty, InjLV #(), bempty,

{{ v, WP InjR v {{ v, ¢ v }} }}

InjLV #(), b)

Juliette Ponsonnet

Francois Pottier ENS de Lyon, INRIA Cambium

A
9 Pluvibse 234

15 / 27

nHp"

Proof Excerpt — Creating Stable References

buffer (1) [x] b
WP ref (bempty,

O
InjLV #QO),

*
bempty ,

{{ v, WP InjR v {{ v, ¢ v }} }}

InjLV #(), b)

wp_apply (csref_alloc (fiveTuple [x])) as "% #HC".

Juliette Ponsonnet

Francois Pottier ENS de Lyon, INRIA Cambium

A
9 Pluvibse 234

15 / 27

Proof Excerpt — Creating Stable References

nHp"

buffer (1) [x] b

WP ref (bempty, InjLV #(), bempty, InjLV #(), b)
{{ v, WP InjR v {{ v, ¢ v }} }}

wp_apply (csref_alloc (fiveTuple [x])) as "% #HC".

1. Prove the initial value is correct:

"Hb" buffer 1 [x] b

fiveTuple [x] (bempty, InjLV #(), bempty,

2. Continue the proof with the new reference ¢:
" HZ "

InjLV #(), b)

: £ fiveTuple [x]

o
WP InjR #£ {{ v, ¥ v }}

[m] = = =
Juliette Ponsonnet Francois Pottier

ENS de Lyon, INRIA Cambium

DA
9 Pluvibse 234 15 / 27

Proving the Specification

e KOT did not provide a correctness proof
® Correctness of the operations is relatively self-evident

® Showing the invariants are upheld requires a more careful look

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 16 / 27

Pop is not “Simple” at all

Recall:
and pop_triple
type a. a triple nonempty_deque
-> a triple * a triple deque

= fun r ->
let £ = !r in
let t = inspect_first f in
let { first; last; _ } = t in
(¥ The (repaired) mysterious condition: *)
if not (B.is_empty last) || B.has_length_3 first then

(¥ [naive_pop_safe f] is not necessarily true here! x)
naive_pop £

else
pop_nonempty T

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 17 / 27

Specifying pop_triple — Naive-Pop

NAIVEPOP-SAFE
{safeFiveTuple n ft ([x] ++ xs)}

naive_pop ft
(3d) (x, d) {deque n d xs}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium

9 Pluvibse 234 18 / 27

Specifying pop_triple — Naive-Pop

NAIVEPOP-SAFE
{safeFiveTuple n ft ([x] ++ xs)}

naive_pop ft
(3d) (x, d) {deque n d xs}

NAIVEPOP-UNSAFE
{fiveTuple n ft ([x] ++ xs)}

naive_pop ft
wp
(3d) (x, d) | Vy, push y d
(3d") d" {deque n d' ([y] ++ xs)}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 18 / 27

Specifying pop_triple — The Mysterious Condition

The “mysterious condition” seen before is used to decide which path is
executed in pop_triple. Depending on whether the triple popped is
“special”, the post-condition is different.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 19 / 27

Specifying pop_triple — The Mysterious Condition

The “mysterious condition” seen before is used to decide which path is
executed in pop_triple. Depending on whether the triple popped is
“special”, the post-condition is different.

PoPTRIPLE
{dequeOfTriples n d ([t] ++ ts)}

pop-_triple d
nonSpecial Triple n xs t * deque n d’ ts

(3d) (t, d') \/
special Triple n xs t
vt', wp push t’ d’ (3d”) d” {deque n d” ([t'] ++ ts)}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 19 / 27

You are here

@ Time Complexity: Statement and Proof

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 19 / 27

New Specification

persistent(Dequeg 7 d xs) Dequeg m empty []

{Deque$7rdxs * £ o« $7 }
push x d
3d’) d’ {Deque$ md ([x] ++xs) * £ }

pop d
(3d") (x,d") {Deque$ md xs x #7 }

{Deque$ 7 dxs x Dequeg m d xs' x £ x $57 }

concat d d’
3d") d” {Deque$ wd" (xs++xs') * £ }

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium

9 Pluvibse 234 20 / 27

New Deque Predicate

Deques ™ d xs = dequeg m 0d xs

[I>

"d = None N xs=1[]" Vv
3¢.7d = Some(£)" *

¢ =2 (\Mt. fiveTupleg 7 n ft xs)

dequeg m™ nd xs

fiveTupleg m n ft xs £ Ip,I,m, r,S,XSp, XSS[, XSm, XSSy, XSs.
$potential(|xsp|, [xss|) *

Potential in the structure: the natural amortised analysis technique in Iris®.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 21 /27

Potential is not Shareable

The concurrent stable references do not work with this definition.

CSREF-READ
persistent(¢) —

[t 6} 10 (3v) v {p v}

fiveTuple is not persistent, as it contains credits. We need be able to
borrow them and put them back later.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 22 / 27

The Need For Two Interfaces

Concurrent Sequential
Correctness Proof Complexity Proof
CSRef SSRef

(

Stable Reference

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 23 / 27

Sequential Stable References (SSRef)

SSREF-NEw-PooL SSREF-PERSIST SSREF-ALLOC
= I, ™0 persistent({ == ¢) {¢p v} ref v (3¢) £ {{ &2 ¢}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 24 / 27

Sequential Stable References (SSRef)

SSREF-NEw-PooL SSREF-PERSIST SSREF-ALLOC
= I, ™0 persistent({ == ¢) {¢p v} ref v (3¢) £ {{ &2 ¢}
SSREF-READ

(Vv. pv—sxov *x ¢ v) —x
{(E2 ¢+ YU @) v{yv x £}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 24 / 27

Sequential Stable References (SSRef)

SSREF-NEw-PooL SSREF-PERSIST SSREF-ALLOC
= I, ™0 persistent({ == ¢) {¢p v} ref v (3¢) £ {{ &2 ¢}
SSREF-READ

(Vv. pv—sxov *x ¢ v) —x
{(E2 ¢+ YU @) v{yv x £}

SSREF-READ-WRITE
{é L G !7”’}
1/
@A) v {pv x 7w WV T owp 0=V () {£77))

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 24 / 27

Sequential Stable References (SSRef)

SSREF-NEw-PooL SSREF-PERSIST SSREF-ALLOC
= . ™0 persistent({ == ¢) {¢p v} ref v (3¢) £ {{ &2 ¢}
SSREF-READ

(Vv. pv—sxov *x ¢ v) —x
{(E2 ¢+ YU @) v{yv x £}

SSREF-READ-WRITE
{é L G !7”’}
1/
@A) v {pv x 7w WV T owp 0=V () {£77))

This interface is not more general than CSRef: it forbids concurrent access.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 24 / 27

"HE" LA,

Proof Excerpt — Temporarily Breaking Invariants

depth} fiveTuple 7 n xs
WP let: "f" := !
oo ol

{{ v, ¥ v }}

#¢ <- "r";; naive_pop "r"

Juliette Ponsonnet

Francois Pottier ENS de Lyon, INRIA Cambium

A
9 Pluviése 234

25 / 27

wgen

L =Ar,

depth} fiveTuple
WP let: "f"
r

Proof Excerpt — Temporarily Breaking Invariants
] -1 %t 4m

{{ v, ¥ v }}

#¢ <- "r";; naive_pop "r"

wp_apply (ssref_read_write with "[H{ Token]") as "%ft (Token & Hft & DONE)".

Juliette Ponsonnet

Francois Pottier ENS de Lyon, INRIA Cambium

A
9 Pluviése 234

25 / 27

Proof Excerpt — Temporarily Breaking Invariants

"H¢" : £={mw, depth} fiveTuple 7 n xs

o [m]
"Token" Token 7 depth
______________________________________ P
WP let: "f" := ! #/{ in

oo ol

#¢ <- "r";; naive_pop "r"
{{ v, ¥ v }}

wp_apply (ssref_read_write with "[H{ Token]") as "%ft (Token & Hft & DONE)".

1. Provide the token and the reference (iFrame).

2. Continue the proof:
ft : val
"Hft" : fiveTuple m n xs ft
"Token" : Token m (depth + 1)
"DONE" : Vt’, fiveTuple 7 n xs t’ — Token 7 (S depth)
— WP (#0 « t’) {{ Token m depth }}

<- "r";; naive_pop "r"

H{ v, ¥vv i

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 25 / 27

Where the Original Proof Breaks

and pop_triple
type a. a triple
-> a triple * a triple deque

= fun r
let f
let t

(*x The
if not
(* The
if not

=2

'r in

nonempty_deque

inspect_first f in
let { first; child

(old)
(is_empty

(repaired)

(B.is_empty

naive_pop f

else

pop_nonempty r

; last } = t in
mysterious condition:

*)

child) || B.has_length_3 first then

mysterious condition:

*)

last) || B.has_length_3 first then

The old one breaks potential invariants down the line in pop_nonempty in
one single possible configuration of t. We have checked that this case is

feasible.

Juliette Ponsonnet

Francois Pottier

ENS de Lyon, INRIA Cambium

9 Pluvibse 234 26 / 27

You are here

@ Conclusion

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 26 / 27

Conclusion

Summary of Achievements
® Applied the structure to a concurrent setting.
e Concurrent correctness and O(1) amortised sequential complexity.
® Fixed a flaw in KOT's proof: thanks Rocq!

Key Contribution: Stable References
® We introduced Stable References, a novel abstraction for reasoning
about shared memory cells supporting restricted updates.
® We developed two distinct interfaces with different capabilities:

® CSRef for fully concurrent read/writes, requires persistent properties.
® SSRef for any property (e.g time credits), forbids concurrent access.

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 27 / 27

Komkn

Figure: Philosophers’ Problem

Figure: High Potential Cat

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluviése 234 27 / 27

Tokens and Non-Atomic Invariants

Here is the (simplified) API for non-atomic invariants:

NAINV-NEwW-PooL NAINV-NEW-INV
=, 3. ™0 > P =, ONalnv™"(P)
NAINv-Acc

Nalnv™"(P) = ™" o, (> P % #77FT)

Where P x, Q means we can get @ from P then recover P from Q2.

2also does view-shifting into the next namespace
Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 27 / 27

Time Credits

TIcK_cosT € {0, 1}

TIME-ZERO TiME-COMBINE
$0 -~ emp $(n+m)—=9%n x $m
TICK-SPEC

{$ Tick_cost} tick() () {emp}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium

9 Pluvibse 234 27 / 27

OCaml — Tests & Proofs

HeaplLang for Proof

OCaml Testing
® Manual translation from

® Monolith to identify issues. OCaml
aml.
e Confirmed KOT error
feasibili ® Some recent tools propose
easibility. automation

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 27 / 27

Sequential Specification For pop_triple

POPTRIPLE
{dequeOfTripless m n d ([t] ++ ts) = 7" % $171}
pop_triple d
nonSpecial Triple ™ n xst * dequeg m n d' ts

@d') (t, d') { £ «

special Triple w n xst * $(171 —4) =
Vt', wp push t’ d' (3d") d’ {dequeg m n d”’ ([t'] ++ ts)}

Juliette Ponsonnet Francois Pottier ENS de Lyon, INRIA Cambium 9 Pluvibse 234 27 / 27

	Introduction
	The KOT Data Structure
	Specification
	Stable References
	Correctness Proof
	Time Complexity: Statement and Proof
	Conclusion
	More Slides Just In Case

